题目链接:点击打开链接
Time Limit: 2 second(s) | Memory Limit: 32 MB |
There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.
Input
Input starts with an integer T (≤ 15), denoting the number of test cases.
The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than1000000000.
Output
For each case, print the case number and the number of parallelograms that can be formed.
Sample Input | Output for Sample Input |
2 6 0 0 2 0 4 0 1 1 3 1 5 1 7 -2 -1 8 9 5 7 1 1 4 8 2 0 9 8 | Case 1: 5 Case 2: 6 |
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAX=1e6+10;
int n;
struct node
{
double x,y;
};
node point1[MAX];
node point2[MAX]; // point2 的容量远比 point1 大得多
bool judge(int a,int b)
{
if(point2[a].x==point2[b].x&&point2[a].y==point2[b].y)
return 1;
return 0;
}
bool cmp(node a,node b)
{
if(a.x!=b.x)
return a.x<b.x;
return a.y<b.y;
}
int main()
{
int t,text=0;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%lf %lf",&point1[i].x,&point1[i].y);
int k=0;
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
point2[k].x=(point1[i].x+point1[j].x)/2;
point2[k++].y=(point1[i].y+point1[j].y)/2;
}
}
/* 不能这样干,这样干是超时的,
int cnt=0;
for(int i=0;i<k;i++)
{
for(int j=i+1;j<k;j++)
{
if(judge(i,j))
cnt++;
}
}
printf("Case %d: %d\n",++text,cnt);*/
int cnt=1,ans=0;
sort(point2,point2+k,cmp); // 排序是为了方便下面比较
for(int i=1;i<k;i++)
{
if(judge(i,i-1))
{
cnt++;
}
else
{
ans+=(cnt-1)*cnt/2; // 计算就是组合数:从 n个数里面取出 2个数 ,就是 C(n,2)
cnt=1; // 一定要初始化的
}
}
if(cnt>1) ans+=(cnt-1)*cnt/2; // 判断循环的最后一组数据,如果也存在相同的点,就加上
printf("Case %d: %d\n",++text,ans);
}
return 0;
}