以下是三道博弈论入门的题,不对结论进行证明,具体的解释可以看一下下面的文章。对于这三道题只写出结论和最终的代码。
巴什博弈
有一堆石子共有N个。A B两个人轮流拿,A先拿。每次最少拿1颗,最多拿K颗,拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N和K,问最后谁能赢得比赛。
例如N = 3,K = 2。无论A如何拿,B都可以拿到最后1颗石子。
Input: 第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000) 第2 - T + 1行:每行2个数N,K。中间用空格分隔。(1 <= N,K <= 10^9)
Output: 共T行,如果A获胜输出A,如果B获胜输出B。
Sample Input:
2
3 2
4 2
Sample Output:
B
A
注意,每人每次最少取1个,最多取k个
1、从A的角度分析,先取的人总是占主导地位,A先取<= k的任意个,从B开始取时A便开始规划,B取完A取,无论B取多少个,只要A取得个数和B取得个数保持在k+1个,A一定能获胜,即n%(k+1)!= 0时,A一定能胜出
2、从B的角度分析,无论A取多少个,只要B计划好每次取的个数和A的个数之和为k+1,如此循环,只要最后没有剩下石子,B就一定能获胜,即 n%(k+1) == 0
#include <stdio.h>
int main(){
int t, n, k, i;
scanf("%d", &t);
for(i = 0;i < t ;i ++){
scanf("%d %d", &n, &k);
if( n %(k+1) == 0){
printf("B\n");
}else{
printf("A\n");
}
}
return 0;
}
尼姆博弈
有N堆石子。A B两个人轮流拿,A先拿。每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N及每堆石子的数量,问最后谁能赢得比赛。
例如:3堆石子,每堆1颗。A拿1颗,B拿1颗,此时还剩1堆,所以A可以拿到最后1颗石子。
Input :第1行:一个数N,表示有N堆石子。(1 <= N <= 1000) 第2 - N + 1行:N堆石子的数量。(1 <= Ai <= 10^9)
Output :如果A获胜输出A,如果B获胜输出B。
Sample Input:
3
1
1
1
Sample Output :A
#include <stdio.h>
int main(){
int n, i, tmp, res = 0;
scanf("%d",&n);
for(i = 0;i < n ; i ++){
scanf("%d",&tmp);
res ^= tmp;
}
if(res == 0){
printf("B\n");
}else{
printf("A\n");
}
return 0;
}
威佐夫博弈
有2堆石子。A B两个人轮流拿,A先拿。每次可以从一堆中取任意个或从2堆中取相同数量的石子,但不可不取。拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出2堆石子的数量,问最后谁能赢得比赛。
例如:2堆石子分别为3颗和5颗。那么不论A怎样拿,B都有对应的方法拿到最后1颗。
Input:第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000) 第2 - T + 1行:每行2个数分别是2堆石子的数量,中间用空格分隔。(1 <= N <= 2000000)
Output:共T行,如果A获胜输出A,如果B获胜输出B。
Sample Input:
3
3 5
3 4
1 9
Sample Output:
B
A
A
#include <stdio.h>
#include <math.h>
/**
* 威佐夫博弈,在奇异局势下,无论先手怎么取,后手必赢
* 奇异局势:设第一个值小于第二个值,第一个值总是等于当前局势的差值乘上1.618
* 1.618 = (sqrt(5.0) + 1) / 2
*/
int main(){
int n, i, a, b, tmp;
scanf("%d",&n);
double rate = (sqrt(5.0) + 1) / 2 ;
for(i = 0;i < n ; i ++){
scanf("%d %d", &a, &b);
if(a > b){
tmp = a;
a = b;
b = tmp;
}
if(a == (int)((b - a) * rate)){
printf("B\n");
}else{
printf("A\n");
}
}
return 0;
}