这是一个相对常见的问题,特别是在处理大数据集时。以下是一个使用Python和Numpy库的示例,该示例展示了如何通过追加数据构建Numpy数组(事先不知道完整大小):
```python
import numpy as np
# 初始化一个空的列表,用于存储数据
data = []
# 模拟从数据库获取数据的过程,这里仅作演示,实际情况可能需要从文件或其他来源读取数据
for i in range(10): # 假设我们已经有10条记录
record = np.random.rand(3) # 生成一个随机的三维数组作为示例
data.append(record)
# 将列表转换为Numpy数组
array = np.array(data)
print(array)
```
在这个例子中,我们首先初始化了一个空列表`data`,然后模拟从数据库获取数据的过程。每循环一次,就生成一个随机的三维数组作为示例,并将其添加到`data`列表中。最后,我们将`data`列表转换为Numpy数组,并打印出来。
这个方法的一个优点是它不需要事先知道完整的大小。但是,它的缺点是每次追加数据时都需要将整个列表转换成Numpy数组,这可能会消耗大量的内存资源。
如果你需要处理大量数据,并且希望减少内存的使用,可以使用NumPy的`genfromtxt`或`loadtxt`函数,这些函数可以逐行读取文件,而不是一次性加载整个文件到内存中。例如:
```python
import numpy as np
# 假设我们有一个CSV文件,每一行是一个三维数组
data = np.genfromtxt('data.csv', delimiter=',')
print(data)
```
在这个例子中,`genfromtxt`函数会逐行读取'data.csv'文件,并将其内容转换为Numpy数组。这种方法的好处是它只需要一行内存来存储当前正在处理的行,而不是整个文件。
1443

被折叠的 条评论
为什么被折叠?



