通过追加数据构建Numpy数组(事先不知道完整大小)

这是一个相对常见的问题,特别是在处理大数据集时。以下是一个使用Python和Numpy库的示例,该示例展示了如何通过追加数据构建Numpy数组(事先不知道完整大小):

```python
import numpy as np

# 初始化一个空的列表,用于存储数据
data = []

# 模拟从数据库获取数据的过程,这里仅作演示,实际情况可能需要从文件或其他来源读取数据
for i in range(10):  # 假设我们已经有10条记录
    record = np.random.rand(3)  # 生成一个随机的三维数组作为示例
    data.append(record)

# 将列表转换为Numpy数组
array = np.array(data)

print(array)
```

在这个例子中,我们首先初始化了一个空列表`data`,然后模拟从数据库获取数据的过程。每循环一次,就生成一个随机的三维数组作为示例,并将其添加到`data`列表中。最后,我们将`data`列表转换为Numpy数组,并打印出来。

这个方法的一个优点是它不需要事先知道完整的大小。但是,它的缺点是每次追加数据时都需要将整个列表转换成Numpy数组,这可能会消耗大量的内存资源。

如果你需要处理大量数据,并且希望减少内存的使用,可以使用NumPy的`genfromtxt`或`loadtxt`函数,这些函数可以逐行读取文件,而不是一次性加载整个文件到内存中。例如:

```python
import numpy as np

# 假设我们有一个CSV文件,每一行是一个三维数组
data = np.genfromtxt('data.csv', delimiter=',')

print(data)
```

在这个例子中,`genfromtxt`函数会逐行读取'data.csv'文件,并将其内容转换为Numpy数组。这种方法的好处是它只需要一行内存来存储当前正在处理的行,而不是整个文件。

【源码免费下载链接】:https://renmaiwang.cn/s/gxrh8 该系统采用PHP开发,功能定位为在线视频平台,并专为电影网站搭建与管理而设计。其核心优势在于具备数据采集能力,能够自动生成来自网络的影视资源链接,从而帮助用户快速构建内容库并减少手动上传工作量。在系统架构中,包含多个关键组件:配置文件(.htaccess)用于定义URL重写规则;Apache服务器配置文件(.htaccess)可能支持SEO优化、隐藏真实路径或实现目录保护等功能;IIS服务器配置文件(httpd.ini)包含了PHP配置信息、站点设置及权限管理等数据;入口文件(index.php)负责处理用户请求并展示首页内容,同时支持用户登录操作;安装脚本(install.php)引导数据库连接设置、权限验证和初始数据导入过程;后台管理界面(admin.php)允许管理员完成对网站的各种控制与维护;系统介绍文档(system-intro.txt)详细描述了系统的功能特性及其适用场景;安装说明文件(install-manual.txt)提供完整的部署步骤及注意事项;合作邀请文件(invite-partners.txt)旨在吸引合作伙伴共同推广或定制该平台;HTML模板文件位于/HMPL子目录中,用于构建网站前端页面;运行时临时文件存放于/Runtime目录内,管理日志、缓存和会话数据等。这些组件协同运作,形成一个功能完善且易于管理的在线视频平台系统,在合理配置下,用户可快速搭建包含电影推荐、分类、搜索与评论等功能的网站,并通过数据采集维持内容更新。对于希望进入在线视频领域的企业或个人来说,这是一份值得考虑的选择方案。
项目资源包含:可运行源码+sql文件+LW; python3.8+django+mysql5.7+html 适用人群:学习同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 本研究将应用Python编程语言进行数据处理和深度学习模型的建立,结合MySQL数据库存储数据,以及采用Django框架构建用户友好的Web应用界面,为用户提供便捷操作体验。深度学习方法将是本研究的核心技术,利用卷积神经网络(CNN)等模型来实现对手写文字的特征抽取和识别,从而提高系统的识别准确度和稳定性。同时,引入光学字符识别(OCR)技术对文本进行处理,进一步优化手写文字的识别过程,提升整个系统的效率和可靠性。 管理员功能需求主要包括密码修改、手写字识别、手写数字识别和识别日志信息统计功能,以提供更方便、高效的管理和监控服务。 系统将采用深度学习技术实现图像文字识别功能,通过训练模型和使用预训练模型,能够准确识别上传图像中的文字信息。深度学习模型将会通过对大量样本数据的学习和训练,掌握各种字体、大小和颜色的特征,以提高识别准确性。在文字识别过程中,系统将进行错误处理和结果记录。当发生识别错误或未能识别的情况时,系统会将相关信息进行记录,并生成日志文件,便于管理员进行问题分析和修复。为了提高系统的性能和稳定性,采用异步任务队列来处理识别请求,将请求和响应分离,减少延迟时间,提升系统的并发处理能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

潮易

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值