凸优化第三章凸函数 作业题

本文探讨了凸优化中的拟凸函数特性,通过分析函数的水平集和上境图来判断函数的性质。举例说明了如何根据下水平集和上水平集的凸性判断函数是凸函数、拟凸函数还是拟凹函数,并讨论了函数的共轭函数及其定义。
摘要由CSDN通过智能技术生成

水平集

1)Some level sets of a function f are shown below. The curve labeled 1 shows\left \{ x|f(x)=1 \right \},etc

Which of the following properties could f have?

由图像可看出f(x)的下水平集是凸集,故函数是拟凸函数,但不能由下水平集是凸集而判断函数是凸函数还是凹函数。而函数上水平集不是凸集,故函数f(x)不是拟凹函数。

2)Now consider the following function:

Which of the following properties could f have?

从图像函数下水平集不是凸集,已知凸函数的下水平集一定是凸集,所以函数f(x)不是凸函数,故其为凹函数。而上水平集是凸集,故函数f(x)是拟凹函数。

函数和上境图

1)The epigraph of a function f is a halfspace if and only if

函数的上境图是半空间,即下图,所以函数f(x)是一个仿射函数。

 

2)The epigraph of a function f is a convex cone if and only if

函数f(x)的上境图是一个凸锥,所以f(x)一定是凸函数,根据凸锥的定义:\forall z,y\in C,\forall \theta_1 ,\theta _2\geq 0,\theta_1 z+\theta_2 y\in C

如上图,令\theta_2=0,此时只看z的那条射线,可知\forall \theta_1\geqslant 0,\theta_1 z\in C,因为上图是f(x)的上境图,故z的射线其实就是f(x)函数在那段区间的取值,这里假设z的射线对应的x区间为[x_1,+\infty ],所以\forall x \in[x_1,+\infty ],(x,f(x))都在射线z上,\forall \theta_1\geq 0,(\theta_1 x,f(\theta_1 x))在射线z上,由锥的定义\forall \theta_1\geqslant 0,\theta_1 z\in C,可知\forall \theta_1\geq 0,x\in [x_1,+\infty ],(\theta_1 x,\theta_1 f(x))\in z\Rightarrow \forall \theta_1\geq 0,x\in [x_1,+\infty ],(\theta_1 x,\theta_1 f(x))=(\theta_1 x,\theta_1 f(x))

同理可证在射线y上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值