水平集
1)Some level sets of a function f are shown below. The curve labeled 1 shows,etc
Which of the following properties could f have?
由图像可看出f(x)的下水平集是凸集,故函数是拟凸函数,但不能由下水平集是凸集而判断函数是凸函数还是凹函数。而函数上水平集不是凸集,故函数f(x)不是拟凹函数。
2)Now consider the following function:
Which of the following properties could f have?
从图像函数下水平集不是凸集,已知凸函数的下水平集一定是凸集,所以函数f(x)不是凸函数,故其为凹函数。而上水平集是凸集,故函数f(x)是拟凹函数。
函数和上境图
1)The epigraph of a function f is a halfspace if and only if
函数的上境图是半空间,即下图,所以函数f(x)是一个仿射函数。
2)The epigraph of a function f is a convex cone if and only if
函数f(x)的上境图是一个凸锥,所以f(x)一定是凸函数,根据凸锥的定义:,
如上图,令,此时只看z的那条射线,可知,因为上图是f(x)的上境图,故z的射线其实就是f(x)函数在那段区间的取值,这里假设z的射线对应的x区间为,所以都在射线z上,在射线z上,由锥的定义,可知
同理可证在射线y上