有关凸集的证明例题_凸集/凸函数习题

0. 前言

2.9

(a) 证明:

​ 考虑

作超平面 $(x_i-x_0)^Tx=(x_i-x_0)^T(x_i+x_0)/2$

​ 对超平面上每个点 $x_k$ 的分量 $j$ 都有 $2(x_{ij}-x_{0j})x_{kj}=(x_i^2-x_0^2)$ ,且 $|x_k-x_0|_2=sqrt{sum_j{(x_{kj}-x_{0j})^2}}$ ,$|x_k-x_i|_2=sqrt{sum_j{(x_{kj}-x_{0j})^2}}$ 。

​ 将第一式带入范数表达式可得对超平面上每个点 $x$ 均有 $|x-x_0|_2=|x-x_i|_2$ ,且对于超平面下方的半空间 $(x_i-x_0)^Txleq(x_i-x_0)^T(x_i+x_0)/2$ ,均有 $|x-x_0|_2leq |x-x_i|_2$ ,对所有的 $i$ 均成立。即 $V$ 的边界为一系列超平面的交,$V$ 为多面体。设 $x_i-x_0=a_i$ ,$(x_i-x_0)^T(x_i+x_0)/2=b_i$ , $V$ 可以被写作

(b)

​ P总可以表达为$P={xmid Axpreceq b}$ 的形式,设 $A={a_1^T,a_2^T,cdots,a_K^T}$ ,对于任意一点 $x_0in P$ 和多面体的面 $a_i^Tx=b$,总可以找到直线 $x=x_0+ka_i, kintextbf{R}$ 上的一点 $x_i$ 满足对面上任意一点 $x_k$ ,有 $ |x_i-x_k|_2=|x_0-x_k|_2$ (作点 $x_0$ 关于面的对称点即可) ,

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值