ADV-104-算法提高-打水问题

算法提高 打水问题
问题描述
  N个人要打水,有M个水龙头,第i个人打水所需时间为Ti,请安排一个合理的方案使得所有人的等待时间之和尽量小。
输入格式
  第一行两个正整数N M 接下来一行N个正整数Ti。
  N,M<=1000,Ti<=1000
输出格式
  最小的等待时间之和。(不需要输出具体的安排方案)
样例输入
7 3
3 6 1 4 2 5 7
样例输出
11
提示
  一种最佳打水方案是,将N个人按照Ti从小到大的顺序依次分配到M个龙头打水。
  例如样例中,Ti从小到大排序为1,2,3,4,5,6,7,将他们依次分配到3个龙头,则去龙头一打水的为1,4,7;去龙头二打水的为2,5;去第三个龙头打水的为3,6。
  第一个龙头打水的人总等待时间 = 0 + 1 + (1 + 4) = 6
  第二个龙头打水的人总等待时间 = 0 + 2 = 2
  第三个龙头打水的人总等待时间 = 0 + 3 = 3

  所以总的等待时间 = 6 + 2 + 3 = 11


#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
//int  cmp(int a,int b)	return a<b;

int main() {
	int n,m;
	cin>>n>>m;
	int *a=new int [n];
	for(int i=0;i<n;i++) {
		cin>>a[i];
	}
	sort(a,a+n);
	int cnt=n/m;
	int ans=0;
	while(cnt--) {
		for(int j=0;j<cnt*m;j++)
			ans+=a[j];
	}
	
	for(int i=n/m*m;i<n;i++) {
		for(int j=i%m;j<n/m*m;j+=m)
			ans+= a[j];
	}
	cout<<ans;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值