算法提高 打水问题
问题描述
N个人要打水,有M个水龙头,第i个人打水所需时间为Ti,请安排一个合理的方案使得所有人的等待时间之和尽量小。
输入格式
第一行两个正整数N M 接下来一行N个正整数Ti。
N,M<=1000,Ti<=1000
输出格式
最小的等待时间之和。(不需要输出具体的安排方案)
样例输入
7 3
3 6 1 4 2 5 7
样例输出
11
提示
一种最佳打水方案是,将N个人按照Ti从小到大的顺序依次分配到M个龙头打水。
例如样例中,Ti从小到大排序为1,2,3,4,5,6,7,将他们依次分配到3个龙头,则去龙头一打水的为1,4,7;去龙头二打水的为2,5;去第三个龙头打水的为3,6。
第一个龙头打水的人总等待时间 = 0 + 1 + (1 + 4) = 6
第二个龙头打水的人总等待时间 = 0 + 2 = 2
第三个龙头打水的人总等待时间 = 0 + 3 = 3
问题描述
N个人要打水,有M个水龙头,第i个人打水所需时间为Ti,请安排一个合理的方案使得所有人的等待时间之和尽量小。
输入格式
第一行两个正整数N M 接下来一行N个正整数Ti。
N,M<=1000,Ti<=1000
输出格式
最小的等待时间之和。(不需要输出具体的安排方案)
样例输入
7 3
3 6 1 4 2 5 7
样例输出
11
提示
一种最佳打水方案是,将N个人按照Ti从小到大的顺序依次分配到M个龙头打水。
例如样例中,Ti从小到大排序为1,2,3,4,5,6,7,将他们依次分配到3个龙头,则去龙头一打水的为1,4,7;去龙头二打水的为2,5;去第三个龙头打水的为3,6。
第一个龙头打水的人总等待时间 = 0 + 1 + (1 + 4) = 6
第二个龙头打水的人总等待时间 = 0 + 2 = 2
第三个龙头打水的人总等待时间 = 0 + 3 = 3
所以总的等待时间 = 6 + 2 + 3 = 11
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
//int cmp(int a,int b) return a<b;
int main() {
int n,m;
cin>>n>>m;
int *a=new int [n];
for(int i=0;i<n;i++) {
cin>>a[i];
}
sort(a,a+n);
int cnt=n/m;
int ans=0;
while(cnt--) {
for(int j=0;j<cnt*m;j++)
ans+=a[j];
}
for(int i=n/m*m;i<n;i++) {
for(int j=i%m;j<n/m*m;j+=m)
ans+= a[j];
}
cout<<ans;
return 0;
}