等比数列的概念和性质01

相关概念

  • 刻画等比数列的三种语言数学学习中少不了三种语言的相互转化,比如自然语言,就是我们经常口头表述的那种;符号语言,比如 f ( x ) ⊆ g ( x ) f(x)\subseteq g(x) f(x)g(x) x ∈ A x\in A xA等等;图形语言,比如图形;关于三种常用且常见的数学语言形式的相互转换,往往会成为学生学习中的桎梏。建议大家不妨看看三种语言的相互转化

[自然语言]:从第二项起,每一项与它的前一项的比等于同一个常数的数列称为等比数列此处一定要仔细体会类比的学习方法,比如 a n + 1 − a n = d a_{n+1}-a_n=d an+1an=d为等差数列,则将差类比为商,则可知 a n + 1 a n = q \cfrac{a_{n+1}}{a_n}=q anan+1=q就称作等比数列;等差数列的相关结论可以类比到等比数列中来;等差数列的相关证明思路和方法也可以类比到等比数列里来,同样,我们还可以定义等和数列,等积数列等;,这个常数称为公比,常用 q q q来表示。类比

[符号语言]:

a n + 1 a n = q \quad\quad\quad\quad\quad\quad\cfrac{a_{n+1}}{a_{n}}=q anan+1=q,其中 n ⩾ 1 n\geqslant 1 n1 n ∈ N ∗ n\in N^* nN q q q为常数。

a n a n − 1 = q \quad\quad\quad\quad\quad\quad\cfrac{a_n}{a_{n-1}}=q an1an=q n ⩾ 2 n\geqslant 2 n2 n ∈ N ∗ n\in N^* nN q q q为常数。

[图形语言]:

  • 等比中项:如果三个实数 a , G , b a,G,b aGb成等比数列,则 G G G称为 a , b a,b ab的等比中项,满足 G 2 = a b G^2=ab G2=ab1
  • 等比数列的通项公式: a n = a 1 ⋅ q n − 1 a_n=a_1\cdot q^{n-1} an=a1qn1,推广形式为 a n = a m ⋅ q n − m a_n=a_m\cdot q^{n-m} an=amqnm,其中对 n − 1 n-1 n1的理解和等差数列中的 n − 1 n-1 n1的理解是一样的;
  • 等比数列的前 n n n项和公式: S n = { n a 1 , q = 1 a 1 ⋅ ( 1 − q n ) 1 − q = a 1 − a n q 1 − q , q ≠ 1 \quad S_n=\left\{\begin{array}{l}{na_1,q=1}\\{\cfrac{a_1\cdot (1-q^n)}{1-q}=\cfrac{a_1-a_nq}{1-q},q\neq 1}\end{array}\right.\quad Sn= na1q=11qa1(1qn)=1qa1anqq=1 2

已知 S n = a + a 2 + a 3 + ⋯ + a n ( a ≠ 0 ) S_{n}=a+a^{2}+a^{3}+\cdots+a^{n}(a\neq 0) Sn=a+a2+a3++an(a=0),求 S n S_{n} Sn的表达式。

分析:由于 a ≠ 0 a\neq 0 a=0,故此数列为等比数列,由等比数列的前 n n n项和公式,

应该分 a = 1 a=1 a=1 a ≠ 1 a\neq 1 a=1两种情形讨论如下:

a = 1 a=1 a=1时, { a n } \{a^{n}\} {an}是等差数列,也是等比数列, S n = 1 + 1 2 + 1 3 + ⋯ + 1 n ⏟ n 个 = n S_{n}=\underbrace{1+1^2+1^3+\cdots+1^n}_{n个}=n Sn=n 1+12+13++1n=n

a ≠ 1 a\neq 1 a=1时, { a n } \{a^{n}\} {an}是等比数列,所以 S n = a ( 1 − a n ) 1 − a S_{n}=\cfrac{a(1-a^{n})}{1-a} Sn=1aa(1an)

综上: S n = { n , a = 1 a ( 1 − a n ) 1 − a , a ≠ 1 S_{n}=\left\{\begin{array}{l}n, \quad\quad\quad a=1\\\cfrac{a(1-a^{n})}{1-a}, a\neq 1\end{array}\right. Sn= n,a=11aa(1an),a=1

相关性质

  • ①在等比数列 { a n } \{a_n\} {an}中,若 m + n = p + q = 2 k ( m , n , p , q , k ∈ N ∗ ) m+n=p+q=2k(m,n,p,q,k\in N^*) m+n=p+q=2k(mnpqkN),则 a m ⋅ a n = a p ⋅ a q = a k 2 a_m\cdot a_n=a_p\cdot a_q=a_k^2 aman=apaq=ak2
  • ②若数列 { a n } \{a_n\} {an} { b n } \{b_n\} {bn}(项数相同)是等比数列,则 { λ a n } ( λ ≠ 0 ) \{\lambda a_n\}(\lambda\neq 0) {λan}(λ=0) { 1 a n } \{\cfrac{1}{a_n}\} {an1} { a n 2 } \{a_n^2\} {an2} { a n ⋅ b n } \{a_n\cdot b_n\} {anbn} { a n b n } \{\cfrac{a_n}{b_n}\} {bnan}仍然是等比数列;3
  • ③在等比数列 { a n } \{a_n\} {an}中,等距离取出若干项也构成一个等比数列,即 a m , a m + k , a m + 2 k , a m + 3 k , ⋯ a_m,a_{m+k},a_{m+2k},a_{m+3k},\cdots amam+kam+2kam+3k为等比数列,公比为 q k q^k qk4
  • ④当公比〔情形一: q ≠ − 1 q\neq-1 q=1〕或〔情形二: q = − 1 q=-1 q=1 n n n为奇数〕时,则 S n S_n Sn S 2 n − S n S_{2n}-S_n S2nSn S 3 n − S 2 n S_{3n}-S_{2n} S3nS2n ⋯ \cdots 仍成等比数列,其公比为 q n q^n qn

当公比 q = − 1 q=-1 q=1时, S n S_n Sn S 2 n − S n S_{2n}-S_n S2nSn S 3 n − S 2 n S_{3n}-S_{2n} S3nS2n ⋯ \cdots 不一定成等比数列,

n n n为偶数,则其不能构成等比数列,

n n n为奇数,则可以构成等比数列。

用数列 2 , − 2 , 2 , − 2 , 2 , − 2 , ⋯ , 2 , − 2 2,-2,2,-2,2,-2,\cdots,2,-2 22222222验证如下,

n = 2 n=2 n=2时,则 S 2 = 0 S_2=0 S2=0 S 4 = 0 S_4=0 S4=0 S 6 = 0 S_6=0 S6=0,则 S 2 S_2 S2 S 4 − S 2 S_4-S_2 S4S2 S 6 − S 4 S_6-S_4 S6S4 ⋯ \cdots ,就不能构成等比数列;

n = 3 n=3 n=3时,则 S 3 = 2 S_3=2 S3=2 S 6 = 0 S_6=0 S6=0 S 9 = 2 S_9=2 S9=2,则 S 3 S_3 S3 S 6 − S 3 S_6-S_3 S6S3 S 9 − S 6 S_9-S_6 S9S6 ⋯ \cdots ,却能构成等比数列;

  • ⑤研究 q ≠ 1 q\neq 1 q=1的等比数列的前 2 n 2n 2n项,

S 偶 = a 2 + a 4 + a 6 + ⋯ + a 2 n S_{偶}=a_2+a_4+a_6+\cdots+a_{2n} S=a2+a4+a6++a2n S 奇 = a 1 + a 3 + a 5 + ⋯ + a 2 n − 1 S_{奇}=a_1+a_3+a_5+\cdots+a_{2n-1} S=a1+a3+a5++a2n1,则 S 偶 S 奇 = q \cfrac{S_{偶}}{S_{奇}}=q SS=q

说明: S 偶 = a 2 + a 4 + a 6 + ⋯ + a 2 n = a 2 ⋅ [ 1 − ( q 2 ) n ] 1 − q 2 S_{偶}=a_2+a_4+a_6+\cdots+a_{2n}=\cfrac{a_2\cdot [1-(q^2)^n]}{1-q^2} S=a2+a4+a6++a2n=1q2a2[1(q2)n] S 奇 = a 1 + a 3 + a 5 + ⋯ + a 2 n − 1 = a 1 ⋅ [ 1 − ( q 2 ) n ] 1 − q 2 S_{奇}=a_1+a_3+a_5+\cdots+a_{2n-1}=\cfrac{a_1\cdot [1-(q^2)^n]}{1-q^2} S=a1+a3+a5++a2n1=1q2a1[1(q2)n],则 S 偶 S 奇 = q \cfrac{S_{偶}}{S_{奇}}=q SS=q

或者 S 偶 = a 2 + a 4 + a 6 + ⋯ + a 2 n = q ( a 1 + a 3 + a 5 + ⋯ + a 2 n − 1 ) = q ⋅ S 奇 S_{偶}=a_2+a_4+a_6+\cdots+a_{2n}=q(a_1+a_3+a_5+\cdots+a_{2n-1})=q\cdot S_{奇} S=a2+a4+a6++a2n=q(a1+a3+a5++a2n1)=qS,则 S 偶 S 奇 = q \cfrac{S_{偶}}{S_{奇}}=q SS=q

  • ⑥等比数列的单调性判断,

依然遵从函数的单调性〔如利用指数型函数 f ( x ) = 3 ⋅ 2 x f(x)=3\cdot2^x f(x)=32x的单调性〕判断,取决于两个参数 a 1 a_1 a1 q q q的取值,由于

a n = a 1 ⋅ q n − 1 a_n=a_1\cdot q^{n-1} an=a1qn1

故当 { a 1 > 0 q > 1 \left\{\begin{array}{l}{a_1>0}\\{q>1}\end{array}\right. {a1>0q>1 { a 1 < 0 0 < q < 1 \left\{\begin{array}{l}{a_1<0}\\{0<q<1}\end{array}\right. {a1<00<q<1时, a n a_n an单调递增;

{ a 1 > 0 0 < q < 1 \left\{\begin{array}{l}{a_1>0}\\{0<q<1}\end{array}\right. {a1>00<q<1 { a 1 < 0 q > 1 \left\{\begin{array}{l}{a_1<0}\\{q>1}\end{array}\right. {a1<0q>1时, a n a_n an单调递减;

补充:由于数列 { a n } \{a_n\} {an}为等比数列,故公比 q ≠ 0 q\neq 0 q=0

q = 1 q=1 q=1时,数列 { a n } \{a_n\} {an}为常数列,没有单调性;

q < 0 q<0 q<0时,数列 { a n } \{a_n\} {an}为摆动数列,没有单调性;

⑦注意 a n a_n an 类与 S n S_n Sn 类的相互转化,以便于使用等比数列的对应性质;

比如, S 3 = a 1 + a 2 + a 3 S_3=a_1+a_2+a_3 S3=a1+a2+a3 S 6 − S 3 = a 4 + a 5 + a 6 S_6-S_3=a_4+a_5+a_6 S6S3=a4+a5+a6 S 9 − S 6 = a 7 + a 8 + a 9 S_9-S_6=a_7+a_8+a_9 S9S6=a7+a8+a9

判定证明

证明方法:

  • 定义法: a n a n − 1 = q ( n ≥ 2 ) \cfrac{a_n}{a_{n-1}}=q(n\ge 2) an1an=q(n2),或者 a n + 1 a n = q ( n ≥ 1 ) \cfrac{a_{n+1}}{a_n}=q(n\ge 1) anan+1=q(n1)
  • 等比中项法: a n + 1 2 = a n ⋅ a n + 2 ( n ≥ 1 ) a_{n+1}^2=a_n\cdot a_{n+2}(n\ge 1) an+12=anan+2(n1),或者 a n 2 = a n + 1 ⋅ a n − 1 ( n ≥ 2 ) a_n^2=a_{n+1}\cdot a_{n-1}(n\ge 2) an2=an+1an1(n2)

判定方法:除了上述的两种方法以外,还有

  • 通项公式法: a n = c ⋅ q n ( n ∈ N ∗ ) a_n=c\cdot q^n(n\in N^*) an=cqn(nN) c c c q q q均为不为零的常数,

说明: a n = a 1 ⋅ q n − 1 = a 1 q ⋅ q n = c ⋅ q n a_n=a_1\cdot q^{n-1}=\cfrac{a_1}{q}\cdot q^n=c\cdot q^n an=a1qn1=qa1qn=cqn[指数型函数],

  • n n n项和法: S n = k ⋅ q n − k S_n=k\cdot q^n-k Sn=kqnk k ≠ 0 k\neq 0 k=0 q ≠ 0 q\neq 0 q=0 q ≠ 1 q\neq 1 q=1

说明: S n = a 1 ⋅ ( 1 − q n ) 1 − q = a 1 1 − q − a 1 1 − q ⋅ q n S_n=\cfrac{a_1\cdot (1-q^n)}{1-q}=\cfrac{a_1}{1-q}-\cfrac{a_1}{1-q}\cdot q^n Sn=1qa1(1qn)=1qa11qa1qn,令 − a 1 1 − q = k -\cfrac{a_1}{1-q}=k 1qa1=k,则 S n = k ⋅ q n − k S_n=k\cdot q^n-k Sn=kqnk

如果判定某数列不是等比数列,只需要判定其有连续三项不成等比数列即可,这样就可以联系到赋值法,比如常常判断 a 2 2 ≠ a 1 ⋅ a 3 a_2^2\neq a_1\cdot a_3 a22=a1a3

变形技巧

①常用的数学公式:

$a^3-b^3=(a-b)(a^2+ab+b^2)$;
$a_4^2+2a_4a_6+a_6^2=(a_4+a_6)^2$;
$a_4^2+2a_3a_7+a_6^2=(a_4+a_6)^2$;
$a_4^2+2a_5^2+a_6^2=(a_4+a_6)^2$;
$1-q^2=(1-q)(1+q)$;
$1-q^3=(1-q)(1+q+q^2)$;
$1-q^6=1-(q^3)^2=(1+q^3)(1-q^3)$;
$q^6-1=(q^3)^2-1=(q^3+1)(q^3-1)$;
$\frac{S_{10}}{S_5}=\frac{\frac{a_1(1-q^{10})}{1-q}}{\frac{a_1(1-q^5)}{1-q}}=1+q^5$;
$\frac{S_6}{S_3}=\frac{\frac{a_1(1-q^6)}{1-q}}{\frac{a_1(1-q^3)}{1-q}}=1+q^3$

②整体思想的运用,解方程组时整体相除,

{ a 1 q 3 − a 1 q = 6 ① a 1 q 4 − a 1 = 15 ② \left\{\begin{array}{l}{a_1q^3-a_1q=6①}\\{a_1q^4-a_1=15②}\end{array}\right. {a1q3a1q=6①a1q4a1=15②

两式相除得到, a 1 ( q 3 − q ) a 1 ( q 4 − 1 ) = a 1 q ( q 2 − 1 ) a 1 ( q 2 + 1 ) ( q 2 − 1 ) = q 1 + q 2 = 2 5 \cfrac{a_1(q^3-q)}{a_1(q^4-1)}=\cfrac{a_1q(q^2-1)}{a_1(q^2+1)(q^2-1)}=\cfrac{q}{1+q^2}=\cfrac{2}{5} a1(q41)a1(q3q)=a1(q2+1)(q21)a1q(q21)=1+q2q=52,从而解得 q = 2 q=2 q=2 q = 1 2 q=\cfrac{1}{2} q=21

  • 求比值时整体思想的运用;

再比如给定等比数列 { a n } \{a_n\} {an}的公比为 q = 2 q=2 q=2,求 a 8 + a 9 + a 10 a 5 + a 6 + a 7 \cfrac{a_8+a_9+a_{10}}{a_5+a_6+a_7} a5+a6+a7a8+a9+a10的值。

由题目可知, a 8 + a 9 + a 10 a 5 + a 6 + a 7 = ( a 5 + a 6 + a 7 ) ⋅ q 3 a 5 + a 6 + a 7 = q 3 = 8 \cfrac{a_8+a_9+a_{10}}{a_5+a_6+a_7}=\cfrac{(a_5+a_6+a_7)\cdot q^3}{a_5+a_6+a_7}=q^3=8 a5+a6+a7a8+a9+a10=a5+a6+a7(a5+a6+a7)q3=q3=8

③当涉及 S n S_n Sn的下标比较小的运算题目时,常常利用定义式。

比如已知等比数列的 S 3 = 8 S_3=8 S3=8,则可知 S 3 = a 1 + a 2 + a 3 = 8 S_3=a_1+a_2+a_3=8 S3=a1+a2+a3=8,这样可以有效的避免分类讨论,而不是利用 a 1 ( 1 − q 3 ) 1 − q = 8 \cfrac{a_1(1-q^3)}{1-q}=8 1qa1(1q3)=8来计算,如果非要利用这个公式,你就必须先分类讨论排除 q ≠ 1 q\neq 1 q=1,否则使用就是错的。

④比例因子的运用。设等比数列 { a n } \{a_n\} {an}的前 n n n项的和为 S n S_n Sn,若 S 6 S 3 = 1 2 \cfrac{S_6}{S_3}=\cfrac{1}{2} S3S6=21,则 S 9 S 6 \cfrac{S_9}{S_6} S6S9=?

分析:引入比例因子,设 S 6 S 3 = 1 2 = k 2 k ( k ≠ 0 ) \cfrac{S_6}{S_3}=\cfrac{1}{2}=\cfrac{k}{2k}(k\neq 0) S3S6=21=2kk(k=0)

S 6 = k S_6=k S6=k S 3 = 2 k S_3=2k S3=2k S 6 − S 3 = − k S_6-S_3=-k S6S3=k,由 S 3 , S 6 − S 3 , S 9 − S 6 S_3,S_6-S_3,S_9-S_6 S3S6S3S9S6成等比数列,

可知 S 9 − S 6 = k 2 S_9-S_6=\cfrac{k}{2} S9S6=2k,则 S 9 = 3 k 2 S_9=\cfrac{3k}{2} S9=23k,故 S 9 S 6 = 3 k 2 2 k = 3 4 \cfrac{S_9}{S_6}=\cfrac{\frac{3k}{2}}{2k}=\cfrac{3}{4} S6S9=2k23k=43

⑤在数列题目中,若出现各项为正数或 a n > 0 a_n>0 an>0,则有 a n + a n + 1 > 0 a_n+a_{n+1}>0 an+an+1>0,或者 a n + a n − 1 > 0 a_n+a_{n-1}>0 an+an1>0,这样就为约分埋下了伏笔。

比如某个题目变形得到 ( a n + a n − 1 ) ( a n − a n − 1 ) = a n + a n − 1 (a_n+a_{n-1})(a_n-a_{n-1})=a_n+a_{n-1} (an+an1)(anan1)=an+an1,约掉 a n + a n − 1 a_n+a_{n-1} an+an1,得到 a n − a n − 1 = 1 a_n-a_{n-1}=1 anan1=1,即 { a n } \{a_n\} {an}是等差数列。

⑥若出现证明数列 { a n + 1 } \{a_n+1\} {an+1}为等比数列,则你必须意识题目已经给了变形的提示,因为变形到最后必然会出现 a n + 1 = p ( a n − 1 + 1 ) ( p 为常数 ) a_n+1=p(a_{n-1}+1)(p为常数) an+1=p(an1+1)(p为常数)

或者出现同类型的 a n + 1 + 1 = p ( a n + 1 ) ( p 为常数 ) a_{n+1}+1=p(a_n+1)(p为常数) an+1+1=p(an+1)(p为常数),这样你往上回溯,自然就会看到题目应该怎么变形了。

⑦ 等比数列求和中的项数的计算

如数列求和: S = 2 1 + 2 3 + 2 5 + ⋯ + 2 2 n + 3 S=2^1+2^3+2^5+\cdots+2^{2n+3} S=21+23+25++22n+3

其项数的计算,可以利用上标来计算,其上标刚好成等差数列,

故项数 r = a n − a 1 d + 1 = ( 2 n + 3 ) − 1 3 − 1 + 1 = n + 2 r=\cfrac{a_n-a_1}{d}+1=\cfrac{(2n+3)-1}{3-1}+1=n+2 r=dana1+1=31(2n+3)1+1=n+2

S = 2 ⋅ ( 4 n + 2 − 1 ) 4 − 1 = 2 3 ( 4 n + 2 − 1 ) S=\cfrac{2\cdot (4^{n+2}-1)}{4-1}=\cfrac{2}{3}(4^{n+2}-1) S=412(4n+21)=32(4n+21)

⑧设元技巧

当题目已知三个数成等比数列时,我们常常依次设三个数为 a q \cfrac{a}{q} qa a a a a q aq aq,这样设元的优越性在于其积为 a 3 a^3 a3,如果题目恰好已知了其积的值,则中间的数立马可知,这样变量就剩下一个 q q q了;

当已知五个数成等差数列时,常设为 a q 2 \cfrac{a}{q^2} q2a a q \cfrac{a}{q} qa a a a a q aq aq a q 2 aq^2 aq2

⑨已知 a n = 2 n − 1 a_n=2n-1 an=2n1,则 a 2 n − 1 = 2 ⋅ 2 n − 1 − 1 = 2 n − 1 a_{2^{n-1}}=2\cdot 2^{n-1}-1=2^n-1 a2n1=22n11=2n1

a l o g 2 n − 1 = 2 ( l o g 2 n − 1 ) − 1 = 2 l o g 2 n − 3 a_{log_2n-1}=2(log_2n-1)-1=2log_2n-3 alog2n1=2(log2n1)1=2log2n3 a l o g 2 ( n − 1 ) = 2 l o g 2 ( n − 1 ) − 1 a_{log_2(n-1)}=2log_2(n-1)-1 alog2(n1)=2log2(n1)1

给出方式

  • 直接给出: a n + 1 a n = 3 \cfrac{a_{n+1}}{a_n}=3 anan+1=3
  • 赋值给出: a n + m = a n ⋅ a m a_{n+m}=a_n\cdot a_m an+m=anam a 1 = 2 a_1=2 a1=2,求通项公式 a n a_n an5
  • 变形给出: S n + 1 − S n = 3 ( S n − S n − 1 ) S_{n+1}-S_n=3(S_n-S_{n-1}) Sn+1Sn=3(SnSn1)
  • 变形给出: 2 a n + 1 = 2 3 a n 2^{a_{n+1}}=2^{3a_{n}} 2an+1=23an( a n > 0 a_n>0 an>0),则得到 a n + 1 = 3 a n a_{n+1}=3a_n an+1=3an
  • 变形给出: l o g 3 a n + 1 = l o g 3 a n + 1 log_3a_n+1=log_3a_{n+1} log3an+1=log3an+1,则得到 a n + 1 = 3 a n a_{n+1}=3a_n an+1=3an
  • 变形给出: a n + 1 2 a n = 4 ( a n + 1 − a n ) \cfrac{a_{n+1}^2}{a_n}=4(a_{n+1}-a_{n}) anan+12=4(an+1an),得到 ( a n + 1 − 2 a n ) 2 = 0 (a_{n+1}-2a_n)^2=0 (an+12an)2=0
  • 变形给出: a n > 0 a_n>0 an>0,点 ( a n + 1 2 , a n 2 ) (a_{n+1}^2,a_n^2) (an+12an2)在直线 x − 9 y = 0 x-9y=0 x9y=0上,则 a n + 1 2 = 9 a n 2 a_{n+1}^2=9a_n^2 an+12=9an2,即 a n + 1 = 3 a n a_{n+1}=3a_n an+1=3an
  • 构造给出:如 a n + 1 = 2 a n + 1 a_{n+1}=2a_n+1 an+1=2an+1,构造得到 a n + 1 + 1 = 2 ( a n + 1 ) a_{n+1}+1=2(a_n+1) an+1+1=2(an+1),即数列 { a n + 1 } \{a_n+1\} {an+1}为等比数列;

其他变形请参阅常见构造方法


  1. 对等比中项的理解和把握,要比等差中项难得多。任意两个实数都有等差中项,但任意两个实数不一定都有等比中项。
    注意:①必须 a b > 0 ab>0 ab>0才能保证 G G G的存在性。比如 − 2 -2 2 3 3 3就没有等比中项;
    ②若 1 1 1 G G G 4 4 4三个数成等比数列,则 G = ± 2 G=\pm 2 G=±2[两个值];但是若 − 1 -1 1 2 2 2 G G G 8 8 8 − 16 -16 16成等比数列,则 G = − 4 G=-4 G=4[一个值,原因是限制条件比前面得情形要多]; ↩︎

  2. 其中 n n n为参与求和的项数,而不是最后一项的指数。上述公式体现的是分段函数,当知道 q q q的值的时候,自然是确定的某一段函数,题目考查第二段的时候居多,当不知道 q q q的值时,应该分类讨论,尤其容易漏掉对第一段的说明;实际应用中,当 q > 1 q>1 q>1时,为减少运算步骤,常用 S n = a 1 ⋅ ( q n − 1 ) q − 1 S_n=\cfrac{a_1\cdot(q^n-1)}{q-1} Sn=q1a1(qn1)↩︎

  3. 以数列 { a n ⋅ b n } \{a_n\cdot b_n\} {anbn}为例,说明如何判断其为等比数列?
    设数列 { a n } \{a_n\} {an} { b n } \{b_n\} {bn}分别是公比为 q 1 q_1 q1 q 2 q_2 q2的等比数列,
    由于 a n + 1 ⋅ b n + 1 a n ⋅ b n = a n + 1 a n ⋅ b n + 1 b n = q 1 ⋅ q 2 \cfrac{a_{n+1}\cdot b_{n+1}}{a_n\cdot b_n}=\cfrac{a_{n+1}}{a_n}\cdot\cfrac{b_{n+1}}{b_n}=q_1\cdot q_2 anbnan+1bn+1=anan+1bnbn+1=q1q2
    由于 q 1 ⋅ q 2 q_1\cdot q_2 q1q2为常数,故数列 { a n ⋅ b n } \{a_n\cdot b_n\} {anbn}为等比数列,公比为 q 1 ⋅ q 2 q_1\cdot q_2 q1q2
    其他数列的判断证明与此同理; ↩︎

  4. 由于 a m = a 1 ⋅ q m − 1 a_m=a_1\cdot q^{m-1} am=a1qm1 a m + k = a 1 ⋅ q m + k − 1 a_{m+k}=a_1\cdot q^{m+k-1} am+k=a1qm+k1
    则新数列的公比为 a m + k a m = a 1 ⋅ q m + k − 1 a 1 ⋅ q m − 1 = q k \cfrac{a_{m+k}}{a_m}=\cfrac{a_1\cdot q^{m+k-1}}{a_1\cdot q^{m-1}}=q^k amam+k=a1qm1a1qm+k1=qk; ↩︎

  5. m = 1 m=1 m=1得到 a n + 1 = a n ⋅ a 1 a_{n+1}=a_n\cdot a_1 an+1=ana1
    a n + 1 a n = a 1 = 2 \cfrac{a_{n+1}}{a_n}=a_1=2 anan+1=a1=2,不就是等比数列嘛;
    a n = 2 ⋅ 2 n − 1 = 2 n a_n=2\cdot 2^{n-1}=2^n an=22n1=2n↩︎

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值