典例剖析
【2018·广州综合测试】已知数列 { a n } \{a_n\} { an}为等比数列,若 a 4 + a 6 = 10 a_4+a_6=10 a4+a6=10,则 a 7 ( a 1 + 2 a 3 ) + a 3 a 9 a_7(a_1+2a_3)+a_3a_9 a7(a1+2a3)+a3a9的值为 【】
A . 10 A.10 A.10 B . 20 B.20 B.20 C . 100 C.100 C.100 D . 200 D.200 D.200
【法1】分析: a 7 ( a 1 + 2 a 3 ) + a 3 a 9 = a 7 a 1 + 2 a 3 a 7 + a 3 a 9 a_7(a_1+2a_3)+a_3a_9=a_7a_1+2a_3a_7+a_3a_9 a7(a1+2a3)+a3a9=a7a1+2a3a7+a3a9
= a 4 2 + 2 a 4 a 6 + a 6 2 = ( a 4 + a 6 ) 2 = 1 0 2 = 100 =a_4^2+2a_4a_6+a_6^2=(a_4+a_6)^2=10^2=100 =a42+2a4a6+a62=(a4+a6)2=102=100。故选 C C C。
【法2】:特殊化策略,由于题目数列 { a n } \{a_n\} { an}为等比数列, a 4 + a 6 = 10 a_4+a_6=10 a4+a6=10,则可以将其特殊化为 a 4 = a 6 = 5 a_4=a_6=5 a4=a6=5的特殊的等比数列,即常数列,
此时 a n = 5 a_n=5 an=5,代入运算得到 a 7 ( a 1 + 2 a 3 ) + a 3 a 9 = 100 a_7(a_1+2a_3)+a_3a_9=100 a7(a1+2a3)+a3a9=100,故选 C C C。
【2018 ⋅ \cdot ⋅宁夏石嘴山高三联考】在各项均为正数的等比数列 { a n } \{a_n\} { an}中, a 2 ⋅ a 10 = 9 a_2\cdot a_{10}=9 a2⋅a10=9,则 a 5 + a 7 a_5+a_7 a5+a7 【 】
A . 有最小值 6 A.有最小值6 A.有最小值6 B . 有最大值 6 B.有最大值6 B.有最大值6 C . 有最大值 6 C.有最大值6 C.有最大值6 D . 有最小值 3 D.有最小值3 D.有最小值3
分析:由 a n > 0 a_n>0 an>0, a 2 ⋅ a 10 = 9 a_2\cdot a_{10}=9 a2⋅a10=9,则可知 a 5 ⋅ a 7 = 9 a_5\cdot a_7=9 a5⋅a7=9,
则由均值不等式可知, a 5 + a 7 ≥ 2 a 5 a 7 = 6 a_5+a_7\ge 2\sqrt{a_5a_7}=6 a5+a7≥2a5a7=6,
当且仅当 a 5 = a 7 = 3 a_5=a_7=3 a5=a7=3时取得等号,
故 a 5 + a 7 a_5+a_7 a5+a7有最小值 6 6 6,故选 A A A。
【等比+韦达定理】已知方程 ( x 2 − m x + 2 ) ( x 2 − n x + 2 ) = 0 (x^2-mx+2)(x^2-nx+2)=0 (x2−mx+2)(x2−nx+2)=0的四个根组成以 1 2 \cfrac{1}{2} 21为首项的等比数列,则 m n \cfrac{m}{n} nm等于【】
A . 3 2 A.\cfrac{3}{2} A.23 B . 3 2 或 2 3 B.\cfrac{3}{2}或\cfrac{2}{3} B.23或32 C . 2 3 C.\cfrac{2}{3} C.32 D . 以上都不对 D.以上都不对 D.以上都不对
分析:设 a , b , c , d a,b,c,d a,b,c,d是方程 ( x 2 − m x + 2 ) ( x 2 − n x + 2 ) = 0 (x^2-mx+2)(x^2-nx+2)=0 (x2−mx+2)(x2−nx+2)=0的四个根,
不妨设 a < c < d < b a<c<d<b a<c<d<b,则由韦达定理有 a b = c d = 2 ab=cd=2 ab=cd=2,且 a = 1 2 a=\cfrac{1}{2} a=21,则 b = 4 b=4 b=4,
根据等比数列的性质可知, c = 1 c=1 c=1, d = 2 d=2 d=2,
则 m = a + b = 1 2 + 4 = 9 2 m=a+b=\cfrac{1}{2}+4=\cfrac{9}{2} m=a+b=21+4=29, n = c + d = 3 n=c+d=3 n=c+d=3,
或者 n = a + b = 1 2 + 4 = 9 2 n=a+b=\cfrac{1}{2}+4=\cfrac{9}{2} n=a+b=21+4=29, m = c + d = 3 m=c+d=3 m=c+d=3,
故 m n = 3 2 \cfrac{m}{n}=\cfrac{3}{2} nm=23或 m n = 2 3 \cfrac{m}{n}=\cfrac{2}{3} nm=32,故选 B B B。
【2018奉贤区一模】已知数列 { a n } \{a_n\} { an}的首项 a 1 = 1 a_1=1 a1=1, a n + 1 = 3 S n ( n ∈ N ∗ ) a_{n+1}=3S_n(n\in N^*) an+1=3Sn(n∈N∗),则下列结论正确的是【】
分析:由 a n + 1 = 3 S n ( n ≥ 1 ) a_{n+1}=3S_n(n\ge 1) an+1=3Sn(n≥1),可得 a n = 3 S n − 1 ( n ≥ 2 ) a_n=3S_{n-1}(n\ge 2) an=3Sn−1(n≥2),两式做差,得到
a n + 1 − a n = 3 a n ( n ≥ 2 ) a_{n+1}-a_n=3a_n(n\ge 2) an+1−an=3an(n≥2),整理得到,
当 n ≥ 2 n\ge 2 n≥2时,满足 a n + 1 = 4 a n a_{n+1}=4a_n an+1=4an,
由于 a 1 = 1 a_1=1 a1=1, a n + 1 = 3 S n ( n ≥ 1 ) a_{n+1}=3S_n(n\ge 1) an+1=3Sn(n≥1),故得到 a 2 = 3 a_2=3 a2=3,
故数列 { a n } \{a_n\} { an}的通项公式为 a n = { 1 , n = 1 3 ⋅ 4 n − 2 , n ≥ 2 a_n=\left\{\begin{array}{l}{1,n=1}\\{3\cdot 4^{n-2},n\ge 2}\end{array}\right. an={ 1,n=13⋅4n−2,n≥2
即数列 { a n } \{a_n\} { an}不是等比数列,但是数列 a 2 a_2 a2, a 3 a_3 a