等比数列的概念和性质02

典例剖析

【2018·广州综合测试】已知数列 { a n } \{a_n\} {an}为等比数列,若 a 4 + a 6 = 10 a_4+a_6=10 a4a610,则 a 7 ( a 1 + 2 a 3 ) + a 3 a 9 a_7(a_1+2a_3)+a_3a_9 a7(a12a3)a3a9的值为 【】

A . 10 A.10 A.10 B . 20 B.20 B.20 C . 100 C.100 C.100 D . 200 D.200 D.200

【法1】分析: a 7 ( a 1 + 2 a 3 ) + a 3 a 9 = a 7 a 1 + 2 a 3 a 7 + a 3 a 9 a_7(a_1+2a_3)+a_3a_9=a_7a_1+2a_3a_7+a_3a_9 a7(a12a3)a3a9=a7a1+2a3a7+a3a9

= a 4 2 + 2 a 4 a 6 + a 6 2 = ( a 4 + a 6 ) 2 = 1 0 2 = 100 =a_4^2+2a_4a_6+a_6^2=(a_4+a_6)^2=10^2=100 =a42+2a4a6+a62=(a4+a6)2=102=100。故选 C C C

【法2】:特殊化策略,由于题目数列 { a n } \{a_n\} {an}为等比数列, a 4 + a 6 = 10 a_4+a_6=10 a4a610,则可以将其特殊化为 a 4 = a 6 = 5 a_4=a_6=5 a4=a6=5的特殊的等比数列,即常数列,

此时 a n = 5 a_n=5 an=5,代入运算得到 a 7 ( a 1 + 2 a 3 ) + a 3 a 9 = 100 a_7(a_1+2a_3)+a_3a_9=100 a7(a12a3)a3a9=100,故选 C C C

【2018 ⋅ \cdot 宁夏石嘴山高三联考】在各项均为正数的等比数列 { a n } \{a_n\} {an}中, a 2 ⋅ a 10 = 9 a_2\cdot a_{10}=9 a2a10=9,则 a 5 + a 7 a_5+a_7 a5+a7 【 】

A . 有最小值 6 A.有最小值6 A.有最小值6 B . 有最大值 6 B.有最大值6 B.有最大值6 C . 有最大值 6 C.有最大值6 C.有最大值6 D . 有最小值 3 D.有最小值3 D.有最小值3

分析:由 a n > 0 a_n>0 an>0 a 2 ⋅ a 10 = 9 a_2\cdot a_{10}=9 a2a10=9,则可知 a 5 ⋅ a 7 = 9 a_5\cdot a_7=9 a5a7=9

则由均值不等式可知, a 5 + a 7 ≥ 2 a 5 a 7 = 6 a_5+a_7\ge 2\sqrt{a_5a_7}=6 a5+a72a5a7 =6

当且仅当 a 5 = a 7 = 3 a_5=a_7=3 a5=a7=3时取得等号,

a 5 + a 7 a_5+a_7 a5+a7有最小值 6 6 6,故选 A A A

【等比+韦达定理】已知方程 ( x 2 − m x + 2 ) ( x 2 − n x + 2 ) = 0 (x^2-mx+2)(x^2-nx+2)=0 (x2mx+2)(x2nx+2)=0的四个根组成以 1 2 \cfrac{1}{2} 21为首项的等比数列,则 m n \cfrac{m}{n} nm等于【】

A . 3 2 A.\cfrac{3}{2} A.23 B . 3 2 或 2 3 B.\cfrac{3}{2}或\cfrac{2}{3} B.2332 C . 2 3 C.\cfrac{2}{3} C.32 D . 以上都不对 D.以上都不对 D.以上都不对

分析:设 a , b , c , d a,b,c,d abcd是方程 ( x 2 − m x + 2 ) ( x 2 − n x + 2 ) = 0 (x^2-mx+2)(x^2-nx+2)=0 (x2mx+2)(x2nx+2)=0的四个根,

不妨设 a < c < d < b a<c<d<b a<c<d<b,则由韦达定理有 a b = c d = 2 ab=cd=2 ab=cd=2,且 a = 1 2 a=\cfrac{1}{2} a=21,则 b = 4 b=4 b=4

根据等比数列的性质可知, c = 1 c=1 c=1 d = 2 d=2 d=2

m = a + b = 1 2 + 4 = 9 2 m=a+b=\cfrac{1}{2}+4=\cfrac{9}{2} m=a+b=21+4=29 n = c + d = 3 n=c+d=3 n=c+d=3

或者 n = a + b = 1 2 + 4 = 9 2 n=a+b=\cfrac{1}{2}+4=\cfrac{9}{2} n=a+b=21+4=29 m = c + d = 3 m=c+d=3 m=c+d=3

m n = 3 2 \cfrac{m}{n}=\cfrac{3}{2} nm=23 m n = 2 3 \cfrac{m}{n}=\cfrac{2}{3} nm=32,故选 B B B

【2018奉贤区一模】已知数列 { a n } \{a_n\} {an}的首项 a 1 = 1 a_1=1 a1=1 a n + 1 = 3 S n ( n ∈ N ∗ ) a_{n+1}=3S_n(n\in N^*) an+1=3Sn(nN),则下列结论正确的是【】

$A.$数列$\{a_n\}$是等比数列
$B.$数列$a_2,a_3,\cdots,a_n$是等比数列
$C.$数列$\{a_n\}$是等差数列
$D.$数列$a_2,a_3,\cdots,a_n$是等差数列

分析:由 a n + 1 = 3 S n ( n ≥ 1 ) a_{n+1}=3S_n(n\ge 1) an+1=3Sn(n1),可得 a n = 3 S n − 1 ( n ≥ 2 ) a_n=3S_{n-1}(n\ge 2) an=3Sn1(n2),两式做差,得到

a n + 1 − a n = 3 a n ( n ≥ 2 ) a_{n+1}-a_n=3a_n(n\ge 2) an+1an=3an(n2),整理得到,

n ≥ 2 n\ge 2 n2时,满足 a n + 1 = 4 a n a_{n+1}=4a_n an+1=4an

由于 a 1 = 1 a_1=1 a1=1 a n + 1 = 3 S n ( n ≥ 1 ) a_{n+1}=3S_n(n\ge 1) an+1=3Sn(n1),故得到 a 2 = 3 a_2=3 a2=3

故数列 { a n } \{a_n\} {an}的通项公式为 a n = { 1 , n = 1 3 ⋅ 4 n − 2 , n ≥ 2 a_n=\left\{\begin{array}{l}{1,n=1}\\{3\cdot 4^{n-2},n\ge 2}\end{array}\right. an={1n=134n2n2

即数列 { a n } \{a_n\} {an}不是等比数列,但是数列 a 2 a_2 a2 a 3 a_3 a3 ⋯ \cdots a n a_n an是等比数列;故选 B B B

【等比中项,易错题】已知等比数列 { a n } \{a_n\} {an}中, a 3 = 4 a_3=4 a3=4 a 9 = 1 a_9=1 a9=1, 求 a 6 = a_6= a6=

分析: a 6 2 = a 3 ⋅ a 9 = 4 a_6^2=a_3\cdot a_9=4 a62=a3a9=4,故 a 6 = ± 2 a_6=\pm 2 a6=±2。原因是 a 6 = a 3 ⋅ q 3 a_6=a_3\cdot q^3 a6=a3q3 q 3 q^3 q3可取正负两种情形,故 a 6 = ± 2 a_6=\pm 2 a6=±2

  • 对照:已知等比数列 { a n } \{a_n\} {an}中, a 3 = 4 a_3=4 a3=4 a 11 = 1 a_{11}=1 a11=1, 则 a 7 = a_7= a7=

分析: a 7 2 = a 3 ⋅ a 11 = 4 a_7^2=a_3\cdot a_{11}=4 a72=a3a11=4,故 a 7 = ± 2 a_7=\pm 2 a7=±2。又由于 a 7 = a 3 ⋅ q 4 a_7=a_3\cdot q^4 a7=a3q4 q 4 q^4 q4只能取正值一种情形,故 a 7 = 2 a_7=2 a7=2

【2018漳州八校联考】等比数列 { a n } \{a_n\} {an}的前 n n n项和为 S n S_n Sn,若 S 3 = 2 S_3=2 S3=2 S 6 = 18 S_6=18 S6=18,则 S 10 S 5 \cfrac{S_{10}}{S_5} S5S10等于【】

A . − 3 A.-3 A.3 B . 5 B.5 B.5 C . − 31 C.-31 C.31 D . 33 D.33 D.33

分析:由题目可知 q ≠ 1 q\neq 1 q=1,则 S 6 S 3 = a 1 ( 1 − q 6 ) 1 − q a 1 ( 1 − q 3 ) 1 − q = 1 + q 3 = 9 \cfrac{S_6}{S_3}=\frac{\cfrac{a_1(1-q^6)}{1-q}}{\cfrac{a_1(1-q^3)}{1-q}}=1+q^3=9 S3S6=1qa1(1q3)1qa1(1q6)=1+q3=9

q = 2 q=2 q=2,同理, S 10 S 5 = a 1 ( 1 − q 10 ) 1 − q a 1 ( 1 − q 5 ) 1 − q = 1 + q 5 = 33 \cfrac{S_{10}}{S_5}=\frac{\cfrac{a_1(1-q^{10})}{1-q}}{\cfrac{a_1(1-q^5)}{1-q}}=1+q^5=33 S5S10=1qa1(1q5)1qa1(1q10)=1+q5=33,故选 D D D

【2018辽宁沈阳二模】已知数列 { a n } \{a_n\} {an}是等比数列,且 a 2 a 3 a 4 = − a 7 2 = − 64 a_2a_3a_4=-a_7^2=-64 a2a3a4=a72=64,则 t a n ( a 4 a 6 3 ⋅ π ) tan(\cfrac{a_4a_6}{3}\cdot \pi) tan(3a4a6π)=【】

A . 3 A.\sqrt{3} A.3 B . − 3 B.-\sqrt{3} B.3 C . − 3 3 C.-\cfrac{\sqrt{3}}{3} C.33 D . ± 3 D.\pm \sqrt{3} D.±3

分析:由 a 2 a 3 a 4 = − a 7 2 = − 64 a_2a_3a_4=-a_7^2=-64 a2a3a4=a72=64,可知 a 3 3 = − 64 a_3^3=-64 a33=64,故 a 3 = − 4 a_3=-4 a3=4,又 a 7 = a 3 ⋅ q 4 < 0 a_7=a_3\cdot q^4<0 a7=a3q4<0,故由 a 7 2 = 64 a_7^2=64 a72=64,可得 a 7 = − 8 a_7=-8 a7=8,这样 a 4 a 6 = a 3 a 7 = 32 a_4a_6=a_3a_7=32 a4a6=a3a7=32

t a n ( a 4 a 6 3 ⋅ π ) = t a n ( 32 3 ⋅ π ) = t a n ( 2 π 3 ) = − 3 tan(\cfrac{a_4a_6}{3}\cdot \pi)=tan(\cfrac{32}{3}\cdot \pi)=tan(\cfrac{2\pi}{3})=-\sqrt{3} tan(3a4a6π)=tan(332π)=tan(32π)=3 ,故选 B B B.

【2017全国卷2,文科第17题高考真题】已知等差数列 { a n } \{a_n\} {an}的前 n n n项和为 S n S_n Sn,等比数列 { b n } \{b_n\} {bn}的前 n n n项和为 T n T_n Tn a 1 = − 1 , b 1 = 1 , a 2 + b 2 = 2 a_1=-1,b_1=1,a_2+b_2=2 a1=1b1=1a2+b2=2

(1)若 a 3 + b 3 = 5 a_3+b_3=5 a3+b3=5,求 { b n } \{b_n\} {bn}的通项公式。

分析:设等差数列的公差为 d d d,等比数列的公比为 q q q

则由题目可知 { − 1 + d + 1 ⋅ q = 2 − 1 + 2 d + 1 ⋅ q 2 = 5 \begin{cases}-1+d+1\cdot q=2\\-1+2d+1\cdot q^2=5\end{cases} {1+d+1q=21+2d+1q2=5

{ d + q = 3 2 d + q 2 = 6 \begin{cases}d+ q=3\\2d+ q^2=6\end{cases} {d+q=32d+q2=6

解得 q 2 − 2 q = 0 q^2-2q=0 q22q=0,故 q = 2 或 q = 0 ( 舍去 ) q=2或q=0(舍去) q=2q=0(舍去)

故等比数列 { b n } \{b_n\} {bn}的通项公式为 b n = 2 n − 1 b_n=2^{n-1} bn=2n1

(2)若 T 3 = 21 T_3=21 T3=21,求 S 3 S_3 S3

分析:由于 b 1 = 1 , T 3 = 21 b_1=1,T_3=21 b1=1T3=21,故 1 + q + q 2 = 21 1+q+q^2=21 1+q+q2=21,解得 q = − 5 q=-5 q=5 q = 4 q=4 q=4

q = − 5 q=-5 q=5时,由 a 2 + b 2 = 2 a_2+b_2=2 a2+b2=2得到 d = 8 d=8 d=8,此时 S 3 = − 1 + 7 + 15 = 21 S_3=-1+7+15=21 S3=1+7+15=21

q = 4 q=4 q=4时,由 a 2 + b 2 = 2 a_2+b_2=2 a2+b2=2得到 d = − 1 d=-1 d=1,此时 S 3 = − 1 − 2 − 3 = − 6 S_3=-1-2-3=-6 S3=123=6

【2017全国卷2,理科第15题高考真题】已知等差数列 { a n } \{a_n\} {an}的前 n n n项和为 S n S_n Sn a 3 = 3 a_3=3 a3=3 S 4 = 10 S_4=10 S4=10,则 ∑ k = 1 n 1 S k \sum\limits_{k=1}^n{ \cfrac{1}{S_k}} k=1nSk1

分析:由 a 1 + 2 d = 3 a_1+2d=3 a1+2d=3 4 a 1 + 6 d = 10 4a_1+6d=10 4a1+6d=10

容易计算出 a n = n a_n=n an=n,故 S n = n ( n + 1 ) 2 S_n=\cfrac{n(n+1)}{2} Sn=2n(n+1)

则有 1 S n = 2 n ( n + 1 ) = 2 ( 1 n − 1 n + 1 ) \cfrac{1}{S_n}=\cfrac{2}{n(n+1)}=2(\cfrac{1}{n}-\cfrac{1}{n+1}) Sn1=n(n+1)2=2(n1n+11)

∑ k = 1 n 1 S k = 2 [ ( 1 − 1 2 ) + ( 1 2 − 1 3 ) + ⋯ + ( 1 n − 1 n + 1 ) ] \sum\limits_{k=1}^n {\cfrac{1}{S_k}}=2[(1-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+\cdots +(\cfrac{1}{n}-\cfrac{1}{n+1})] k=1nSk1=2[(121)+(2131)++(n1n+11)]

= 2 ( 1 − 1 n + 1 ) = 2 n n + 1 =2(1-\cfrac{1}{n+1})=\cfrac{2n}{n+1} =2(1n+11)=n+12n

已知数列 { a n } \{a_n\} {an}是递增等比数列, a 1 + a 4 = 9 a_1+a_4=9 a1+a4=9 a 2 ⋅ a 3 = 8 a_2\cdot a_3=8 a2a3=8,求其前 n n n项和 S n S_n Sn

分析:由题目可知 a 2 ⋅ a 3 = a 1 ⋅ a 4 = 8 a_2\cdot a_3=a_1\cdot a_4=8 a2a3=a1a4=8

故得到二元二次方程组 { a 1 + a 4 = 9 a 1 ⋅ a 4 = 8 \begin{cases}a_1+a_4=9\\a_1\cdot a_4=8\end{cases} {a1+a4=9a1a4=8

a 1 = 9 − a 4 a_1=9-a_4 a1=9a4代入 a 1 ⋅ a 4 = 8 a_1\cdot a_4=8 a1a4=8,解得 a 1 = 1 a_1=1 a1=1 a 1 = 8 a_1=8 a1=8

对应得到 a 4 = 8 a_4=8 a4=8 a 4 = 1 a_4=1 a4=1,即得到两组解,

{ a 1 = 1 a 4 = 8 \begin{cases}a_1=1\\a_4=8\end{cases} {a1=1a4=8或者 { a 1 = 8 a 4 = 1 ( 由递增舍去 ) \begin{cases}a_1=8\\a_4=1\end{cases}(由递增舍去) {a1=8a4=1(由递增舍去)

故有 a 1 = 1 , a 4 = 8 a_1=1,a_4=8 a1=1a4=8,则 q = 2 q=2 q=2

a n = 2 n − 1 a_n=2^{n-1} an=2n1 S n = 2 n − 1 S_n=2^n-1 Sn=2n1

在等比数列 { a n } \{a_n\} {an}中, a 4 = 2 a_4=2 a4=2 a 5 = 5 a_5=5 a5=5, 则数列 { l g a n } \{lga_n\} {lgan}的前8项之和 T 8 T_8 T8为多少?

法1:由 a 4 = 2 a_4=2 a4=2 a 5 = 5 a_5=5 a5=5,求得 q = 5 2 q=\cfrac{5}{2} q=25

a n = a 4 ⋅ q n − 4 = 2 ⋅ ( 5 2 ) n − 4 a_n=a_4\cdot q^{n-4}=2\cdot (\cfrac{5}{2})^{n-4} an=a4qn4=2(25)n4

l g a n = l g 2 + ( n − 4 ) l g 5 2 lga_n=lg2+(n-4)lg\cfrac{5}{2} lgan=lg2+(n4)lg25,故 { l g a n } \{lga_n\} {lgan}为等差数列。

又可以计算 a 1 = 16 125 a_1=\cfrac{16}{125} a1=12516

T 8 = 8 l g 16 125 + 8 × 7 2 ⋅ l g 5 2 = ⋯ = 4 T_8=8lg\cfrac{16}{125}+\cfrac{8\times7}{2}\cdot lg\cfrac{5}{2}=\cdots=4 T8=8lg12516+28×7lg25==4

法2:由于 { a n } \{a_n\} {an}为等比数列,则有 a n + 1 a n = q \cfrac{a_{n+1}}{a_n}=q anan+1=q

故有 l g a n + 1 − l g a n = l g q lga_{n+1}-lga_n=lgq lgan+1lgan=lgq,即数列 { l g a n } \{lga_n\} {lgan}为等差数列。

T 8 = l g a 1 + l g a 8 2 ⋅ 8 = 4 l g ( a 1 ⋅ a 8 ) = 4 l g ( a 4 ⋅ a 5 ) = 4 l g 10 = 4 T_8=\cfrac{lga_1+lga_8}{2}\cdot 8=4lg(a_1\cdot a_8)=4lg(a_4\cdot a_5)=4lg10=4 T8=2lga1+lga88=4lg(a1a8)=4lg(a4a5)=4lg10=4

【2017全国卷1,文科第17题高考真题】记 S n S_n Sn为等比数列 { a n } \{a_n\} {an}的前 n n n项和,已知 S 2 = 2 , S 3 = − 6 S_2=2,S_3=-6 S2=2S3=6

(1)求数列 { a n } \{a_n\} {an}的通项公式。

分析:本问比较简单,你能说出怎么个简单法吗?

解方程组得到 a 1 = − 2 , q = − 2 a_1=-2,q=-2 a1=2q=2

{ a n } \{a_n\} {an}的通项公式 a n = − 2 ⋅ ( − 2 ) n − 1 = ( − 2 ) n a_n=-2\cdot (-2)^{n-1}=(-2)^n an=2(2)n1=(2)n

(2)求 S n S_n Sn,并判断 S n + 1 , S n , S n + 2 S_{n+1},S_n,S_{n+2} Sn+1SnSn+2是否成等差数列。

分析:先求解

S n = a 1 ( 1 − q n ) 1 − q S_n=\cfrac{a_1(1-q^n)}{1-q} Sn=1qa1(1qn)

= − 2 [ 1 − ( − 2 ) n ] 1 − ( − 2 ) =\cfrac{-2[1-(-2)^n]}{1-(-2)} =1(2)2[1(2)n]

= − 2 + 2 ⋅ ( − 1 ) n ⋅ 2 n 3 =\cfrac{-2+2\cdot (-1)^n\cdot 2^n}{3} =32+2(1)n2n

= − 2 3 + ( − 1 ) n 2 n + 1 3 =-\cfrac{2}{3}+(-1)^n\cfrac{2^{n+1}}{3} =32+(1)n32n+1

接下来你得意识到,

S n S_n Sn是个关于自变量 n n n的函数,

故由此我们应该能写出 S n + 1 S_{n+1} Sn+1 S n + 2 S_{n+2} Sn+2

至于等差数列的判断,我们依据等差中项法判断即可,

即验证 S n + 2 + S n + 1 S_{n+2}+S_{n+1} Sn+2+Sn+1是否等于 2 S n 2S_n 2Sn

判断如下: S n + 2 + S n + 1 S_{n+2}+S_{n+1} Sn+2+Sn+1

= − 2 3 + ( − 1 ) n + 2 2 n + 3 3 − 2 3 + ( − 1 ) n + 1 2 n + 2 3 =-\cfrac{2}{3}+(-1)^{n+2}\cfrac{2^{n+3}}{3}-\cfrac{2}{3}+(-1)^{n+1}\cfrac{2^{n+2}}{3} =32+(1)n+232n+332+(1)n+132n+2

= − 4 3 + ( − 1 ) n ⋅ ( − 1 ) 2 2 n + 3 3 + ( − 1 ) n ⋅ ( − 1 ) 1 2 n + 2 3 =-\cfrac{4}{3}+(-1)^n\cdot (-1)^2\cfrac{2^{n+3}}{3}+(-1)^n\cdot (-1)^1\cfrac{2^{n+2}}{3} =34+(1)n(1)232n+3+(1)n(1)132n+2

= − 4 3 + ( − 1 ) n 2 n + 3 3 − ( − 1 ) n 2 n + 2 3 =-\cfrac{4}{3}+(-1)^n\cfrac{2^{n+3}}{3}-(-1)^n\cfrac{2^{n+2}}{3} =34+(1)n32n+3(1)n32n+2

= − 4 3 + ( − 1 ) n ( 2 n + 2 ⋅ 2 3 − 2 n + 2 3 ) =-\cfrac{4}{3}+(-1)^n(\cfrac{2^{n+2}\cdot 2}{3}-\cfrac{2^{n+2}}{3}) =34+(1)n(32n+2232n+2)

= − 4 3 + ( − 1 ) n 2 n + 2 3 =-\cfrac{4}{3}+(-1)^n\cfrac{2^{n+2}}{3} =34+(1)n32n+2

= 2 [ − 2 3 + ( − 1 ) n 2 n + 1 3 ] = 2 S n =2[-\cfrac{2}{3}+(-1)^n\cfrac{2^{n+1}}{3}]=2S_n =2[32+(1)n32n+1]=2Sn

S n + 1 , S n , S n + 2 S_{n+1},S_n,S_{n+2} Sn+1SnSn+2成等差数列。

【2016宝鸡市二检理科第9题】设等比数列 { a n } \{a_n\} {an}的前 n n n项和为 S n S_n Sn,若 S 5 S_5 S5 S 4 S_4 S4 S 6 S_6 S6成等差数列,则数列 { a n } \{a_n\} {an}的公比 q q q的值为【】

A . − 2 或 1 A.-2或1 A.21 B . − 1 或 2 B.-1或2 B.12 C . − 2 C.-2 C.2 D . 1 D.1 D.1

法1:分类讨论法+公式法;若 q = 1 q=1 q=1,则 S 4 = 4 a 1 ( a 1 ≠ 0 ) S_4=4a_1(a_1\neq 0) S4=4a1(a1=0) S 5 = 5 a 1 S_5=5a_1 S5=5a1 S 6 = 6 a 1 S_6=6a_1 S6=6a1,则 2 S 4 ≠ S 5 + S 6 2S_4\neq S_5+S_6 2S4=S5+S6,故 q ≠ 1 q\neq 1 q=1

S 5 S_5 S5 S 4 S_4 S4 S 6 S_6 S6成等差数列,得到 2 S 4 = S 5 + S 6 2S_4=S_5+S_6 2S4=S5+S6

2 × a 1 ( 1 − q 4 ) 1 − q = a 1 ( 1 − q 5 ) 1 − q + a 1 ( 1 − q 6 ) 1 − q 2\times \cfrac{a_1(1-q^4)}{1-q}=\cfrac{a_1(1-q^5)}{1-q}+\cfrac{a_1(1-q^6)}{1-q} 2×1qa1(1q4)=1qa1(1q5)+1qa1(1q6) 〔运算训练〕

化简得到, q 2 + q − 2 = 0 q^2+q-2=0 q2+q2=0,解得 q = − 2 q=-2 q=2(舍去 q = 1 q=1 q=1);故选 C C C

法2:定义法,由 S 5 S_5 S5 S 4 S_4 S4 S 6 S_6 S6成等差数列,

则得到 2 S 4 = S 5 + S 6 2S_4=S_5+S_6 2S4=S5+S6,即 2 ( a 1 + a 2 + a 3 + a 4 ) = ( a 1 + a 2 + a 3 + a 4 + a 5 ) + ( a 1 + a 2 + a 3 + a 4 + a 5 + a 6 ) 2(a_1+a_2+a_3+a_4)=(a_1+a_2+a_3+a_4+a_5)+(a_1+a_2+a_3+a_4+a_5+a_6) 2(a1+a2+a3+a4)=(a1+a2+a3+a4+a5)+(a1+a2+a3+a4+a5+a6)

化简得到, 2 a 5 + a 6 = 0 2a_5+a_6=0 2a5+a6=0,即 q = a 6 a 5 = − 2 q=\cfrac{a_6}{a_5}=-2 q=a5a6=2,故选 C C C

【2018宝鸡市二检理科第4题】已知等比数列 { a n } \{a_n\} {an}的前 n n n项和为 S n S_n Sn,则 S n = 2 n − c ( c ∈ R ) S_n=2^n-c(c\in R) Sn=2nc(cR),若 l o g 2 a 1 + l o g 2 a 2 + ⋯ + l o g 2 a n = 10 log_2a_1+log_2a_2+\cdots+log_2a_n=10 log2a1+log2a2++log2an=10,则 n n n值为多少?

分析:本题目的考点有以下几个,其一求等比数列的 a n a_n an,其二由 S n S_n Sn a n a_n an

我们往往需要先由 S n S_n Sn a n a_n an

途径一: a n a_n an S n S_n Sn法,

n ≥ 1 n\ge 1 n1时, S n = 2 n − c ( c ∈ R ) S_n=2^n-c(c\in R) Sn=2nc(cR)

n ≥ 2 n\ge 2 n2时, S n − 1 = 2 n − 1 − c ( c ∈ R ) S_{n-1}=2^{n-1}-c(c\in R) Sn1=2n1c(cR)

n ≥ 2 n\ge 2 n2时, a n = S n − s n − 1 = 2 n − 2 n − 1 = 2 n − 1 a_n=S_n-s_{n-1}=2^n-2^{n-1}=2^{n-1} an=Snsn1=2n2n1=2n1

所以, a n = 2 n − 1 ( n ∈ N ∗ ) a_n=2^{n-1}(n\in N^*) an=2n1(nN)(此处可以验证,也可以不验证,已知的等比)

途径二:由等比数列的前 n n n项和 S n = a 1 ( 1 − q n ) 1 − q = a 1 1 − q ⋅ ( 1 − q n ) = m ⋅ q n − m ( m = − a 1 1 − q ) S_n=\cfrac{a_1(1-q^n)}{1-q}=\cfrac{a_1}{1-q}\cdot (1-q^n)=m\cdot q^n-m(m=-\cfrac{a_1}{1-q}) Sn=1qa1(1qn)=1qa1(1qn)=mqnm(m=1qa1)的性质可知,

c = 1 c=1 c=1 q = 2 q=2 q=2,再由 S 1 = a 1 = 2 1 − 1 = 1 S_1=a_1=2^1-1=1 S1=a1=211=1

a n = 1 × 2 n − 1 ( n ∈ N ∗ ) a_n=1\times 2^{n-1}(n\in N^*) an=1×2n1(nN)

接下来用对数的性质求解转化:

a 1 ⋅ a 2 ⋅ a n = 2 0 ⋅ 2 1 ⋯ 2 n − 1 = 2 0 + 1 + ⋯ + ( n − 1 ) = 2 n ( n − 1 ) 2 a_1\cdot a_2\cdot a_n=2^0\cdot 2^1\cdots 2^{n-1}=2^{0+1+\cdots+(n-1)}=2^{\frac{n(n-1)}{2}} a1a2an=20212n1=20+1++(n1)=22n(n1)

l o g 2 a 1 + l o g 2 a 2 + ⋯ + l o g 2 a n = l o g 2 ( a 1 ⋅ a 2 ⋯ a n ) = l o g 2 2 0 ⋅ 2 1 ⋯ 2 n − 1 log_2a_1+log_2a_2+\cdots+log_2a_n=log_2(a_1\cdot a_2\cdots a_n)=log_22^0\cdot 2^1\cdots 2^{n-1} log2a1+log2a2++log2an=log2(a1a2an)=log220212n1

= l o g 2 2 0 + 1 + ⋯ + ( n − 1 ) = l o g 2 2 n ( n − 1 ) 2 = n ( n − 1 ) 2 = 10 =log_22^{0+1+\cdots+(n-1)}=log_22^{\frac{n(n-1)}{2}}=\cfrac{n(n-1)}{2}=10 =log220+1++(n1)=log222n(n1)=2n(n1)=10,解得 n = 5 n=5 n=5

解后反思:

1、熟练理解等差、等比数列的常用性质,尤其是从函数角度出发的性质,对数学解题有很大的帮助。

2、本题目原来是选择题,给了 2 , 3 , 4 , 5 2,3,4,5 2345四个选项,当进行到解方程 n ( n − 1 ) 2 = 10 \cfrac{n(n-1)}{2}=10 2n(n1)=10时,应该意识到验证总比解方程要节省时间。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值