第三十二章:二叉树的存储与遍历

 前置知识:二叉树的概念与性质

为了保证学习效果,请保证已经掌握前置知识之后,再来学习本章节!

学习目标

  • 熟练掌握二叉树的存储方式

  • 理解二叉树的三种遍历方式的实现过程

  • 给出一棵二叉树,能够写出对应的三种遍历序列,给出任意两种遍历序列,能够推导并还原出二叉树并写出另外一种遍历序列

  • 掌握三种遍历方式的代码实现,掌握给出两种遍历方式的序列,求第三种遍历序列的代码实现

二叉树的存储

二叉树的存储和普通树基本一致。只是由于二叉树中的结点最多只有两个子节点,所以在存储子节点时有区别。

数组存储

Type val[N];             // 存当前结点的信息
int fa[N];               //  存父结点信息
int left[N], right[N];   //  left[i],right[i]: 结点 i 的左孩子和右孩子编号

Copy

结构体存储

struct node{
    Type val;
    int fa;
    int left, right;
} tree[N];

Copy

顺序存储

注意:顺序存储最适用于存储完全二叉树!

顺序存储采用数组下标去保存二叉树的结构,采用完全二叉树的编号方式存储二叉树。

根据二叉树的性质 5,可以快速定位结点 ii 的父结点( \lfloor i/2 \rfloor⌊i/2⌋),左孩子(2x2x),右孩子为(2x+12x+1)。

优点:存储方便,查找父结点、子节点方便

缺点: 除了完全二叉树之外,使用顺序存储会极大浪费空间

二叉树的遍历

树的遍历是指 从根节点出发,按照 某种次序 依次访问树中的所有结点,使得 每个结点都被访问仅被访问一次

层次遍历

即广度优先遍历,遍历规则为:

  1. 若二叉树为空,则停止遍历并返回。

  2. 如果树不为空,则从根节点开始访问,从上而下逐层访问,在同一层中,按照左孩子、右孩子的顺序对节点逐个访问。

示例代码:

const int N  = 10005;
char val[N];             // 存当前结点的信息
int left[N], right[N];   //  left[i],right[i]: 结点 i 的左孩子和右孩子编号
void bfs(int root)
{
    queue<int> q;
    q.push(root);
    while(!q.empty())
    {
        int k = q.front(); q.pop();
        cout << k << ' ';
        if(left[k]) q.push(left[k]);
        if(right[k]) q.push(right[k]);
    }
}

Copy

先序遍历

又称先根遍历、前序遍历。对于一棵非空的树,是指这样的一种遍历顺序:

  1. 访问根节点;
  2. 如果左子树不是空的,那么按照先序遍历的顺序遍历左子树;
  3. 如果右子树不是空的,那么按照先序遍历的顺序遍历右子树;

先序遍历可以总结成三个字: 根左右。容易看出,这种遍历方式的定义是一种递归定义的方式。因此,在代码实现上,先序遍历也是采用递归来实现的。示例代码如下:

// 结构体存树
struct node{
    char val;
    int left, right;
} t[N];

void visit(int node)
{
    cout << t[root].val;    // 输出当前结点——子树的根结点
}

void pre_order(int root)
{
    visit(root);                  // 访问根节点
    if(t[root].left)
        pre_order(t[root].left);  // 左子树不空,遍历左子树
    if(t[root].right)
        pre_order(t[root].right); // 右子树不空,遍历右子树
}

Copy

中序遍历

又称中根遍历。对于一棵非空的树,是指这样的一种遍历顺序:

  1. 如果根节点的左子树不是空的,那么按照中序遍历的顺序遍历左子树;
  2. 访问根节点;
  3. 如果根节点的右子树不是空的,那么按照中序遍历的顺序遍历右子树;

中序遍历可以总结成三个字: 左根右。容易看出,它和先序遍历一样都是递归定义,且只是遍历的顺序不同。示例代码如下:

// 结构体存树
struct node{
    char val;
    int left, right;
} t[N];

void visit(int node)
{
    cout << t[root].val;    // 输出当前结点——子树的根结点
}

void in_order(int root)
{
    if(t[root].left)
        in_order(t[root].left);  // 左子树不空,遍历左子树
    visit(root);                  // 访问根节点
    if(t[root].right)
        in_order(t[root].right); // 右子树不空,遍历右子树
}

Copy

后序遍历

又称后根遍历。对于一棵非空的树,是指这样的一种遍历顺序:

  1. 如果根节点的左子树不是空的,那么按照后序遍历的顺序遍历左子树;
  2. 如果根节点的右子树不是空的,那么按照后序遍历的顺序遍历右子树;
  3. 访问根节点;

后序遍历可以总结成三个字: 左右根。容易看出,它和先序遍历一样都是递归定义,且只是遍历的顺序不同。示例代码如下:

// 结构体存树
struct node{
    char val;
    int left, right;
} t[N];

void visit(int node)
{
    cout << t[root].val;    // 输出当前结点——子树的根结点
}

void in_order(int root)
{
    if(t[root].left)
        in_order(t[root].left);  // 左子树不空,遍历左子树
    if(t[root].right)
        in_order(t[root].right); // 右子树不空,遍历右子树
    visit(root);                  // 访问根节点
}

Copy

练习题

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值