前言
在竞赛中,可以使用 C++ STL 的 sort
函数来直接进行排序(小学阶段足够了),但作为最基本的算法问题之一,各种排序算法中包含了许多二分、分治等重要的算法思想,也是掌握很多其他算法的重要基础。因此,如果想在算法上更加深入地往下学习,那么几种非常重要的排序算法,比如快速排序、归并排序、计数排序等,还是要能够同时掌握其算法思想和代码实现的。下面给出各种经典排序算法的比较:
0、排序算法概述
0.1 算法分类
十种常见排序算法可以分为两大类:
- 比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破 O(n\log n)O(nlogn) ,因此也称为非线性时间比较类排序。
- 非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。
正在上传…重新上传取消
0.2 算法复杂度
正在上传…重新上传取消
0.3 相关概念
- 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。
- 不稳定:如果a原本在b的前面,而a=b,排序之后 a 可能会出现在 b 的后面。
- 时间复杂度:对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。
- 空间复杂度:是指算法在计算机
内执行时所需存储空间的度量,它也是数据规模n的函数。
1、冒泡排序(Bubble Sort)
冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
冒泡排序还有一种优化算法,就是立一个 flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。但这种改进对于提升性能来说并没有什么太大作用。
1.1 算法描述
- 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
-
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
-
针对所有的元素重复以上的步骤,除了最后一个。
-
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
1.2 动图演示
转存失败重新上传取消
1.3 什么时候最快
当输入的数据已经是正序时(都已经是正序了,我还要你冒泡排序有何用啊)。
1.4 什么时候最慢
当输入的数据是反序时(写一个 for 循环反序输出数据不就行了,干嘛要用你冒泡排序呢,我是闲的吗)。
1.5 代码实现
// 冒泡排序
void bubble_sort(int a[],int n) {
for(int i=0; i<n; i++)
{
for(int j=0; j<n-i; j++)
{
if(a[j]>a[j+1])
swap(a[j], a[j+1]); //交换数据
}
}
}
/*
语法说明:
1、数组作为参数传递给函数,传递的其实是数组的地址指针,通常还需要再传递一个参数来表示数组的大小。这里也可以使用 `int* a`,和使用 `int a[]` 没有区别,两种方法都可以实现数组的传递,后面不再做说明;
2、 size_t类型:一种无符号(unsigned)的整型数,并且是平台无关的,表示0-MAXINT的范围,常用在数组的下标中,因为一般来说在进行下标访问时,下标都是正的。竞赛中,为了方便,常使用 int 来访问数组下标,但要注意不能越界。
*/
Copy
2、选择排序(Selection Sort)
选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
注意选择排序与冒泡排序的区别:冒泡排序通过依次交换相邻两个顺序不合法的元素位置,从而将当前最小(大)元素放到合适的位置;而选择排序每遍历一次都记住了当前最小(大)元素的位置,最后仅需一次交换操作即可将其放到合适的位置。
2.1 算法描述
n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:
- 初始状态:无序区为R[1..n],有序区为空;
- 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
- n-1趟结束,数组有序化了。
2.2 动图演示
正在上传…重新上传取消
2.3 代码实现
//选择排序
void select_sort(int a[],int n){
int k;
for(int i=0;i<n-1;i++)
{
temp=i; //利用一个中间变量 k 来记录需要交换元素的位置
for(int j=i+1;j<n;j++)
{
if(a[k]>a[j]) //选出待排数据中的最小值
k=j;
}
swap(a[i], a[k]); //交换函数
}
}
Copy
正常在使用选择排序时,也可以跳过找最小(大)元素的过程,在内层循