Sequential Chain
是LangChain库中的一个强大工具,它允许我们将多个LLMChain
按照特定的顺序连接起来,形成一个处理流程。这种链式结构使得我们可以将一个大任务分解为几个小任务,并依次执行,每个任务的输出成为下一个任务的输入。
示例目标
在这个示例中,我们将构建一个顺序链,目标是:
- 让大模型扮演植物学家的角色,提供特定鲜花的知识和介绍。
- 接着让大模型扮演鲜花评论者的角色,对鲜花进行评论。
- 最后让大模型扮演社交媒体运营经理的角色,撰写一篇鲜花运营文案。
实现步骤
-
导入所需的库和模块:
from langchain_openai import ChatOpenAI from langchain.chains import LLMChain, SequentialChain from langchain.prompts import PromptTemplate
-
创建第一个LLMChain:
生成鲜花的知识性说明。one_template = """ 你是一个植物学家。给定花的名称和类型,你需要为这种花写一个200字左右的介绍。 花名: {name}颜色: {color} 植物学家: 这是关于上述花的介绍: """ one_prompt_template = PromptTemplate( template=one_template,<