yolov5环境配置(Pytorch),免手动安装CUDA

本文详细介绍了如何配置YOLOv5的运行环境,包括检查显卡版本、安装PyCharm和Anaconda,创建虚拟环境并选择合适的CUDA和Python版本,以及在PyCharm中设置解释器和解决环境测试中遇到的问题,如numpy版本不匹配和导入错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前期准备

1.检查显卡版本

        1.1打开命令提示符

        win+R输出cmd即可打开

在命令提示符中输入

nvidia-smi

我途中圈起来的部分就是我的电脑所能支持的最高的CUDA版本号

本文选用CUDA11.3安装

2.安装Pycharm

        官网链接:Download PyCharm: Python IDE for Professional Developers by JetBrains

注意选社区版

Pycharm的安装不做过多表述,下载下来直接安装即可,网络中的安装教程有非常多就不做过的说明,无脑安装即可

3.安装anacon

### YOLOv3的PyTorch环境配置 对于YOLOv3在PyTorch中的部署,确保环境满足Python 3、NumPy、OpenCV-Python等基本需求至关重要[^1]。为了使YOLOv3能够顺利运行于PyTorch之上,建议安装最新稳定版的PyTorch以及相关依赖库。 #### Python版本 推荐使用Python 3.x作为开发环境的基础,因为这是当前大多数机器学习框架支持的主要版本,并且能提供更好的性能和支持更多的第三方包。 #### 安装PyTorch及相关库 可以通过官方渠道获取最新的PyTorch发行版。具体命令如下: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` 此命令会根据用户的CUDA版本自动匹配合适的PyTorch构建。如果不需要GPU加速,则可以直接省略`--extra-index-url`参数来安装CPU-only版本。 除了PyTorch本身外,还需要额外准备一些辅助工具和库,比如用于图像处理操作的OpenCV-Python: ```bash pip install opencv-python numpy matplotlib scikit-image scipy cython ``` 这些软件包有助于数据预处理、可视化和其他实用功能,在实际应用中不可或缺。 #### 获取代码与权重文件 完成上述准备工作之后,可以从GitHub上拉取YOLOv3项目的源码仓库,并按照说明下载对应的预训练模型权重文件。这一步骤通常涉及git clone命令以及可能的手动下载链接访问。 #### NMS模块编译(可选) 针对某些特殊应用场景或者追求更高效率的情况下,可以选择性地编译非极大值抑制(NMS)算法的相关C++扩展部分。不过这对于一般用途来说并非必需项,仅当遇到性能瓶颈时考虑优化路径之一。 ```python import torch print(torch.__version__) ``` 以上就是关于YOLOv3搭配PyTorch所需环境的具体设置方法概述。遵循上述指引应该可以帮助顺利完成整个过程。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangjingyuzero

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值