P1219 [USACO1.5]八皇后 Checker Challenge

该博客探讨了八皇后问题的解决方案,通过回溯算法寻找棋盘上所有可能的棋子放置方式,使得每行、每列及两条对角线上至多有一个棋子。博主分享了一段C++代码实现,并解释了如何使用标记法处理对角线的限制。博客还提供了输入输出样例及数据范围,适合初学者理解和实践回溯算法。
摘要由CSDN通过智能技术生成

P1219 [USACO1.5]八皇后 Checker Challenge

题目描述
一个如下的6×6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。

在这里插入图片描述

上面的布局可以用序列 2 4 6 1 3 5 来描述,第 ii 个数字表示在第 ii 行的相应位置有一个棋子,如下:

行号 1 2 3 4 5 6

列号 2 4 6 1 3 5

这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 33 个解。最后一行是解的总个数。

输入格式
一行一个正整数 n,表示棋盘是n×n 大小的。

输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。

输入输出样例
输入 #1复制
6
输出 #1复制
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
说明/提示
【数据范围】
对于 100% 的数据,6≤n≤13。
算法思路:回溯,搜索,标记。
对于一条从右上到左下的对角线,其上的棋子坐标应满足x+y为一定值;
对于一条从左上到右下的对角线,其上的棋子坐标应满足x-y为一定值,为了避免负数的产生,代码中用x-y+n来储存数字,具体效果读者可以自行研究。
难理解处:标记(对角线)我就是被困在那里

   #include<bits/stdc++.h>
    using namespace std;
    int a[1000],b[1000],c[1000],d[1000],n,s;
    //a存行
    //b存列
    //c存左下到右上的对角线(行+列的和相同)
    //d存右下到左上的对角线(行-列的差相同)
    //清零数组
    void print(){
        int i;s++;
        if(s<=3){
            for(i=1;i<=n;i++)cout<<a[i]<<" ";
            cout<<endl;
        }
    }
    int search(int i){
        int j;
        for(j=1;j<=n;j++)
            if(b[j]==0&&c[i+j]==0&&d[i-j+n]==0){//判断
                a[i]=j;//写进去(第i行第j个) 
                b[j]=1;//占行 
                c[i+j]=1; d[i-j+n]=1;//占对角线 
                if(i==n)print();//满足条件输出 
                else search(i+1);//继续推 
                b[j]=0;c[i+j]=0;d[i-j+n]=0;//回溯
            }
        return 0;
    }
     int main(){
        cin>>n;
        search(1); 
        cout<<s<<endl;
        return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值