P1219 [USACO1.5]八皇后 Checker Challenge
题目描述
一个如下的6×6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
上面的布局可以用序列 2 4 6 1 3 5 来描述,第 ii 个数字表示在第 ii 行的相应位置有一个棋子,如下:
行号 1 2 3 4 5 6
列号 2 4 6 1 3 5
这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 33 个解。最后一行是解的总个数。
输入格式
一行一个正整数 n,表示棋盘是n×n 大小的。
输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
输入输出样例
输入 #1复制
6
输出 #1复制
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
说明/提示
【数据范围】
对于 100% 的数据,6≤n≤13。
算法思路:回溯,搜索,标记。
对于一条从右上到左下的对角线,其上的棋子坐标应满足x+y为一定值;
对于一条从左上到右下的对角线,其上的棋子坐标应满足x-y为一定值,为了避免负数的产生,代码中用x-y+n来储存数字,具体效果读者可以自行研究。
难理解处:标记(对角线)我就是被困在那里
#include<bits/stdc++.h>
using namespace std;
int a[1000],b[1000],c[1000],d[1000],n,s;
//a存行
//b存列
//c存左下到右上的对角线(行+列的和相同)
//d存右下到左上的对角线(行-列的差相同)
//清零数组
void print(){
int i;s++;
if(s<=3){
for(i=1;i<=n;i++)cout<<a[i]<<" ";
cout<<endl;
}
}
int search(int i){
int j;
for(j=1;j<=n;j++)
if(b[j]==0&&c[i+j]==0&&d[i-j+n]==0){//判断
a[i]=j;//写进去(第i行第j个)
b[j]=1;//占行
c[i+j]=1; d[i-j+n]=1;//占对角线
if(i==n)print();//满足条件输出
else search(i+1);//继续推
b[j]=0;c[i+j]=0;d[i-j+n]=0;//回溯
}
return 0;
}
int main(){
cin>>n;
search(1);
cout<<s<<endl;
return 0;
}