练习题 期望dp

题目

在这里插入图片描述
在这里插入图片描述
分析:

首先注意到期望有线性性:
E ( a + b ) = E ( a ) + E ( b ) E(a+b)=E(a)+E(b) E(a+b)=E(a)+E(b),其中 a a a b b b不要求相互独立。

因为网上很多地方的证明不严谨,所以这里证明一下:

E ( a + b ) = ∑ i i ⋅ P ( i = a + b ) E(a+b)=\underset{i}\sum i\cdot P(i=a+b) E(a+b)=iiP(i=a+b)

注意到 P ( i = a + b ) = ∑ α P ( α = a ) ⋅ P ( i − α = b ∣ α = a ) P(i=a+b)=\underset{\alpha}\sum P(\alpha=a)\cdot P(i-\alpha=b|\alpha=a) P(i=a+b)=αP(α=a)P(iα=bα=a),这是因为加法、乘法原理。

因而有:
E ( a + b ) = ∑ i i ⋅ ∑ α P ( α = a ) ⋅ P ( i − α = b ∣ α = a ) E(a+b)=\underset{i}\sum i\cdot \underset{\alpha}\sum P(\alpha=a)\cdot P(i-\alpha=b|\alpha=a) E(a+b)=iiαP(α=a)P(iα=bα=a)
= ∑ α ∑ β ( α + β ) P ( α = a ) ⋅ P ( β = b ∣ α = a ) = \underset{\alpha}\sum\underset{\beta}\sum(\alpha+\beta)P(\alpha=a)\cdot P(\beta=b|\alpha=a) =αβ(α+β)P(α=a)P(β=bα=a)
= ∑ α ∑ β α P ( α = a ) ⋅ P ( β = b ∣ α = a ) + ∑ α ∑ β β P ( α = a ) ⋅ P ( β = b ∣ α = a ) = \underset{\alpha}\sum\underset{\beta}\sum\alpha P(\alpha=a)\cdot P(\beta=b|\alpha=a)+ \underset{\alpha}\sum\underset{\beta}\sum\beta P(\alpha=a)\cdot P(\beta=b|\alpha=a) =αβαP(α=a)P(β=bα=a)+αββP(α=a)P(β=bα=a)
= ∑ α α ⋅ P ( α = a ) ∑ β P ( β = b ∣ α = a ) + ∑ α ∑ β β P ( α = a ) ⋅ P ( β = b ∣ α = a ) = \underset{\alpha}\sum\alpha\cdot P(\alpha=a)\underset{\beta} \sum P(\beta=b|\alpha=a)+ \underset{\alpha}\sum\underset{\beta}\sum\beta P(\alpha=a)\cdot P(\beta=b|\alpha=a) =ααP(α=a)βP(β=bα=a)+αββP(α=a)P(β=bα=a)

注意到 ∑ β P ( β = b ∣ α = a ) = 1 \underset{\beta}\sum P(\beta=b|\alpha=a)=1 βP(β=bα=a)=1
= ∑ α α ⋅ P ( α = a ) + ∑ α ∑ β β P ( α = a ) ⋅ P ( β = b ∣ α = a ) = \underset{\alpha}\sum\alpha\cdot P(\alpha=a)+ \underset{\alpha}\sum\underset{\beta}\sum\beta P(\alpha=a)\cdot P(\beta=b|\alpha=a) =ααP(α=a)+αββP(α=a)P(β=bα=a)
= ∑ α α ⋅ P ( α = a ) + ∑ β β ∑ α P ( α = a ) ⋅ P ( β = b ∣ α = a ) = \underset{\alpha}\sum\alpha\cdot P(\alpha=a)+ \underset{\beta}\sum\beta \underset{\alpha}\sum P(\alpha=a)\cdot P(\beta=b|\alpha=a) =ααP(α=a)+ββαP(α=a)P(β=bα=a)

注意到 P ( α = a ) ⋅ P ( β = b ∣ α = a ) = P ( α = a ∣ β = b ) ⋅ P ( β = b ) P(\alpha=a)\cdot P(\beta=b|\alpha=a)=P(\alpha=a|\beta=b)\cdot P(\beta=b) P(α=a)P(β=bα=a)=P(α=aβ=b)P(β=b)(贝叶斯定理):

= ∑ α α ⋅ P ( α = a ) + ∑ β β ∑ α P ( α = a ∣ β = b ) ⋅ P ( β = b ) = \underset{\alpha}\sum\alpha\cdot P(\alpha=a)+ \underset{\beta}\sum\beta \underset{\alpha}\sum P(\alpha=a|\beta=b)\cdot P(\beta=b) =ααP(α=a)+ββαP(α=aβ=b)P(β=b)

= ∑ α α ⋅ P ( α = a ) + ∑ β β ⋅ P ( β = b ) ∑ α P ( α = a ∣ β = b ) = \underset{\alpha}\sum\alpha\cdot P(\alpha=a)+ \underset{\beta}\sum\beta \cdot P(\beta=b)\underset{\alpha}\sum P(\alpha=a|\beta=b) =ααP(α=a)+ββP(β=b)αP(α=aβ=b)
= ∑ α α ⋅ P ( α = a ) + ∑ β β ⋅ P ( β = b ) = \underset{\alpha}\sum\alpha\cdot P(\alpha=a)+ \underset{\beta}\sum\beta \cdot P(\beta=b) =ααP(α=a)+ββP(β=b)
= E ( a ) + E ( b ) =E(a)+E(b) =E(a)+E(b)

证完。

顺便把乘法的情况也证明一下:
E ( a b ) = E ( a ) ⋅ E ( b ) E(ab)=E(a)\cdot E(b) E(ab)=E(a)E(b) a , b a,b a,b相互独立)

证明:
E ( a b ) = ∑ i i P ( i = a b ) E(ab)=\underset i\sum i P(i=ab) E(ab)=iiP(i=ab)
= ∑ i i ∑ α P ( α = a ) P ( i α = b ∣ α = a ) =\underset i\sum i \underset \alpha \sum P(\alpha=a) P\left(\frac i \alpha=b|\alpha=a\right) =iiαP(α=a)P(αi=bα=a)
= ∑ α ∑ β α β ⋅ P ( α = a ) P ( β = b ∣ α = a ) =\underset \alpha\sum \underset \beta \sum \alpha \beta \cdot P(\alpha=a) P\left(\beta=b|\alpha=a\right) =αβαβP(α=a)P(β=bα=a)

因为 a , b a,b a,b独立,所以 P ( β = b ∣ α = a ) = P ( β = b ) P(\beta=b|\alpha=a)=P(\beta=b) P(β=bα=a)=P(β=b),则:
= ∑ α ∑ β α β ⋅ P ( α = a ) P ( β = b ) =\underset \alpha\sum \underset \beta \sum \alpha \beta \cdot P(\alpha=a) P\left(\beta=b\right) =αβαβP(α=a)P(β=b)
= ∑ α α P ( α = a ) ∑ β β P ( β = b ) =\underset \alpha\sum \alpha P(\alpha=a) \underset \beta \sum\beta P\left(\beta=b\right) =ααP(α=a)ββP(β=b)
= E ( a ) E ( b ) =E(a)E(b) =E(a)E(b)

证完。

题目做法:
首先根据期望的性质,我们划分出一个大小 x x x作为物品,对答案的贡献是 g x = ∑ i = 1 n [ x ≤ a i ] g_x=\overset n{\underset{i=1}\sum}[x\leq a_i] gx=i=1n[xai]

所以说相当于选出恰好 n n n个物品,使得体积之和恰好为 m m m,最小化代价。

首先直接做是不好做的,两个限制的完全背包复杂度为 O ( n 2 m ) O(n^2m) O(n2m)

其次注意到完全背包可以这样dp,即 f i = ∑ i = 1 n f i − w i + c i f_i=\overset n{\underset{i=1}\sum}f_{i-w_i}+c_i fi=i=1nfiwi+ci

所以可以设计 f i , j f_{i,j} fi,j表示个数为 i i i,和为 j j j的最小贡献,则:
f i , j = min ⁡ x ≤ j f i − 1 , j − x + g x f_{i,j}=\underset{x\leq j}\min f_{i-1,j-x}+g_x fi,j=xjminfi1,jx+gx

此时复杂度仍然是 O ( n 2 m ) O(n^2m) O(n2m)

注意到如果选择物品时按照 i i i单调递增的方式来选择,最终也会得到最优答案。
假如我们这样限制的话,对于 f i , j f_{i,j} fi,j x > m − j n − i x>\frac {m-j}{n-i} x>nimj的物品 x x x就不可选了,因为如果选了,则根据单增限制,和 m m m不足以选到 n n n个数字。

因而有:
f i , j = min ⁡ x ≤ m − j n − i f i − 1 , j − x + g x f_{i,j}=\underset{x\leq \frac{m-j}{n-i}}\min f_{i-1,j-x}+g_x fi,j=xnimjminfi1,jx+gx

时间复杂度为 O ( n m ln ⁡ n ) O(nm\ln n) O(nmlnn)

  • 11
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
期望dp和概率dp是两种不同的动态规划方法。 期望dp是指通过计算每个状态的期望值来求解最终的期望。在期望dp中,我们通常定义dp\[i\]表示在第i个状态时的期望值,然后通过状态转移方程来更新dp数组,最终得到最终状态的期望值。期望dp通常用于求解期望问题,例如求解骰子的期望点数、求解抽奖的期望次数等。 概率dp是指通过计算每个状态的概率来求解最终的概率。在概率dp中,我们通常定义dp\[i\]表示在第i个状态时的概率,然后通过状态转移方程来更新dp数组,最终得到最终状态的概率。概率dp通常用于求解概率问题,例如求解抛硬币出现正面的概率、求解从一副牌中抽到红心的概率等。 总结来说,期望dp和概率dp的区别在于它们所计算的是不同的值,期望dp计算的是期望值,而概率dp计算的是概率值。 #### 引用[.reference_title] - *1* [概率/期望dp专题](https://blog.csdn.net/qq_34416123/article/details/126585094)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【动态规划】数学期望/概率DP/期望DP详解](https://blog.csdn.net/weixin_45697774/article/details/104274160)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值