tensorflow1.x的代码如何迁移到2.x以上

对于1.x的版本过于老旧了,很多新的库已经不兼容,甚至是想用gpu训练的时候会有一些限制,

那么如何迁移呢,大多数的函数都是可以通过下面两句话解决

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

在脚本的最上方添加上这两句,基本就解决了大多数的弃用问题。

此外还有一些弃用的函数,是2.x版完全不在使用了,这个时候,就需要去官网库里去搜,搜到相关处理函数,进行替换即可。

就比方说:

 current = tf.contrib.layers.batch_norm(
                    current,
                    scale=False,
                    is_training=is_training,
                    scope=name,
                    reuse=reuse_variables
                )

替换成

 current = tf.keras.layers.BatchNormalization(
                    axis=-1,
                    momentum=0.99,
                    epsilon=0.001,
                    center=True,
                    scale=False,
                    name=name
                )(current)

还有一些其它问题需要置换的,去官网查找置换即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序小K

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值