图神经网络入门

深度学习的发展日新月异,从经典的深度网络(DNN、CNN、RNN)到GAN、强化学习。深度学习覆盖的应用场景越来越丰富。近年来,深度学习领域关于图神经网络(Graph Neural Networks,GNN)的研究热情日益高涨,图神经网络已经成为各大深度学习顶会的研究热点。GNN处理非结构化数据时的出色能力使其在网络数据分析、推荐系统、物理建模、自然语言处理和图上的组合优化问题方面都取得了新的突破。这里主要是对图神经网络做一个入门性质的介绍,梳理图神经网络中的一些核心点,方便后续的进一步深入研究。

图神经网络优势

为什么要引入图神经网络呢?使用经典的深度学习方法不能解决吗?这里举一个引文网络的简单例子。

D1~D7是7篇文章,分为两个主题:生物和化学。其中,D1、D2、D6、D7的主题为生物,D3、D5的主题为化学。箭头被指向的文章,说明这篇文章被引用了,比如,D7引用了D3。现在,从上面的信息,推断下D4的主题是什么?很显然,D4大概率是生物主题。

在这里插入图片描述
我们的推断很大方面依赖于文档间的引用特征。进一步说,我们可以把文档看出节点,引用看出边,我们的推断主要来源于这个图的结构信息。对于深度模型如何有效使用这些图结构信息呢?经典的深度学习方法(比如DNN、RNN、CNN)能够有效的处理原始的输入,比如语音、图片、文本,但对于上面的图结构信息,就不是很有效了。这样就引入了本文的主角-图神经网络。图神经网络的应用场景非常广泛,比如,社交网络(用户节点,关系为边)、电子购物(用户为和商品为节点,用户与商品之间的联系为边)、化学分子(原子为节点,化学键为边)。

图神经网络中的图

提到图大家会想到两类图:

  • 数据结构与算法中的图
  • 概率图模型中的图

因为大家的重点是机器学习,第一感觉会觉得是概率图模型中的图,比如贝叶斯网络、马尔科夫随机场。实际上,图神经网络中使用的是经典数据结构与算法中的图。
在这里插入图片描述
图由顶点(Vertex)和连接顶点的边(Edge)构成。顶点和边之间的关系可以用邻接矩阵(A)表示,两个顶点间有边标识为1,否则为0。如上图所示,图 G = ( V , E ) G=(V,E) G=(V,E)。其中, V = { v 1 , v 2 , v 3 , v 4 , v 5 } V=\{v1,v2,v3,v4,v5\} V={v1,v2,v3,v4,v5} E = { ( v 1 , v 2 ) , ( v 1 , v 3 ) , ( v 2 , v 4 ) , ( v 3 , v 4 ) , ( v 4 , v 5 ) } E=\{(v1,v2),(v1,v3),(v2,v4),(v3,v4),(v4,v5)\} E={(v1,v2),(v1,v3),(v2,v4),(v3,v4),(v4,v5)}。关于更多关于图的知识,可以参考《数据结构》、《离散数学》或者《图论》中的相关内容。

图神经网络的基本框架

神经网络的一个特点就是能将原始的输入变成稠密向量表示,比如将字/词转化为字/词向量(Word2Vec),将文章转化为篇章向量(Doc2Vec),将图片转化为图片向量然后进行分类等。很自然针对于图结构数据,神经网络的一个目标也是将其转化为向量。而具体来说就是:

  • 把什么转化为向量?
  • 怎么转化为向量?

G = ( V , E ) G=(V,E) G=(V,E),很显然,图神经网络就是把整个图G、每个节点V、每条边E转化为稠密向量。当然没必要每次都把G、V、E都进行向量化,哪部分向量化取决于实际的应用场景。一般来说主要包含三类任务:

  1. 节点层面任务
    比如文章最开始提到的引文网络中,节点论文的分类,社交网络中用户标签的分类等。此时,主要关注节点和边层面的特征。
  2. 边层面任务
    比如社交网络中,将用户作为节点,用户之间的关注关系建模为边,通过边预测实现社交用户的推荐。此时,主要关注节点和边的特征。
  3. 图层面的任务
    比如对药物分子的分类。此时,任务不依赖于某个节点或某条边的属性,而是,需要考虑整个图的信息。

图嵌入、图神经网络、图卷积的关系查看图神经网络的资料,最常见图嵌入(Graph Embedding)、图神经网络(GNN)、图卷积(GCN)这三个词,同时,也很容易迷惑:到底这三个说的是三个东西还是一个东西?大家平时说的图网络指的是哪一个?这三个有什么联系?
图神经网络是一个很宽泛的概念,图神经网络=图+神经网络。我们通俗讲的图神经网络主要指GNN和GCN(类似于深度学习网络中的前馈全连接DNN和CNN)。图嵌入发展较早,在早期是一个相对独立的领域,关注的问题大致分为4类:

  • 节点分类
  • 链接预测
  • 聚类
  • 可视化

方法主要分为三类:

  • 基于因子分解的方法
  • 基于随机游走的方法
  • 基于深度学习的方法

其中,基于深度学习的图嵌入可以划到图神经网络的范畴。

图嵌入

图嵌入发展较早,在早期是一个相对独立的领域。具体可以参考《图嵌入(Graph embedding)综述》。图嵌入比较经典的是DeepWalk,基本思想类似词向量训练,具体可以参考《【论文笔记】DeepWalk》.

图神经网络

GNN比较经典的是这篇《The Graph Neural Network Model》:https://repository.hkbu.edu.hk/cgi/viewcontent.cgi?article=1000&context=vprd_ja核心思想:

图卷积网络

GCN分为谱域GCN(Spectral)和空域GCN(Spatial),其中,谱域GCN发展较早,但主要思想基于图的信号处理,理论方面较难理解,很多初学者觉得图网络对数学要求较高,多半是直接从谱域GCN切入的。实际上对于图网络的初学者,建议可以先跳过谱域GCN,等对图网络有较好的理解后,再回过头来看谱域的GCN。引用一段不错的学习思路:许多 GNN 的介绍都用大篇幅去死磕 spectral based 的 GCN。但笔者认为这是本末倒置的行为,忽略了前沿工作里面的许多思想精华。Lecun 的 spectral GCN 是非常经典的工作,但是文章写得晦涩难懂,前置知识也太多,方法的实用性也不大。而且现在主流的方法都是以 spatial 为主的。所以建议初学者还是先学习 spatial 的 model,里面有很多做 DL 的人熟知的套路,接受起来也比较容易。等对整个领域建立起基本的 sense 之后,spectral GCN 以及其背后的 spectral graph theory 不失为一个继续深入的好选择。

参考

  1. 图神经网络如何入门?
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Moore21

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值