第16课:迁移学习的模型训练

本课程介绍了迁移学习的概念及其在人工智能中的价值,特别是解决标注数据缺失的问题。通过 Deeplearning4j 库,展示了如何将预训练的 VGG-16 模型应用于花卉分类问题,实现模型迁移,最终达到约 85% 的分类准确率。迁移学习的关键包括样本、特征、模型和关系迁移,而 Deeplearning4j 提供的工具支持模型迁移,允许仅训练部分参数,降低建模成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本次课程我们为大家介绍一种新的构建模型方式——迁移学习(Transfer Learning)。迁移学习是解决标注数据缺失、从已有模型快速构建新应用的有效手段。迁移学习旨在于不同领域之间进行经验、知识、技能的转移,无需每次都从头学习全新的知识。目前,基于神经网络的迁移学习已经在图像、文本等领域取得了很多的研究成果,在工业界也有落地,本次课程我们在介绍迁移学习相关理论的基础上,结合 Deeplearning4j 对迁移学习的支持场景给出在图像分类问题中的实例。本节课核心内容包括:

  • 迁移学习简介
  • 为什么要做迁移学习
  • 基于 Deeplearning4j 的迁移学习

首先我们来看下迁移学习的相关介绍。

16.1 迁移学习简介

在现实生活中,我们经常需要通过类比的手段,根据已经掌握的技能来学习新的知识。举些具体的例子,会打乒乓球的人通过简单的学习,就可以比较快地掌握网球的打法,会编写 C++ 程序的程序员可能在一周以内就可以掌握 Java 的基本语法。

enter image description here

诸如此类的案例不胜枚举。它们的一个共同点就是借助了知识或者技能迁移的手段。乒乓球和网球不仅是在英文表达上只差了一个 table 单词,更多的是在它们的击球节奏、球的弹跳规律、运动场地和击球工具等多项关键细节上都有些相似。而不论是 Java 还是 C++,面向对象、基本数据类型等语言特性都非常相像,因此知识的迁移就很自然了。

在人工智能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangongxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值