1、假智能:只是一个大型的复杂的程序而已。人工神经网络才让机器拥有了“真智能”。
2、人工神经网络是受到人类大脑结构的启发而创造出来的,这也是它能拥有真智能的根本原因。它的内部是一个黑盒子,就像我们人类的大脑一样,我们不知道它的分析结果,我们不知道它是如何识别出人脸的,也不知道它是如何打败围棋世界冠军的。我们只是为它构造了一个躯壳而已,他脑子里的想法结果的我们并不知道!这就是人工智能的可怕之处。(个人理解:获取事物的关键特征,模拟“专业人士”的思维方式,得到思维处理结果。)
3、训练深度神经网络的过程就叫做深度学习。(深度神经网络:复杂的神经网络。因为代码只是模拟搭建了一个大脑神经网络,如何把这个大脑培养成“专业人士”的头脑,还要进行不断的训练和学习(不同的事物生成不同的判断标准),使其能够得到一些事物特征后,可以根据这个标准准确的判断出结果。)因为事物在电脑中的表现形式不同于现实世界,这个学习方式和判断方式与人类的不太一样,但是基本原理相同。
4、如何将特征数据输入到神经网络中:所有的东西在计算机中都有对应的数字表示形式,通常我们会把它们转化成一个特征向量,然后将其输入到神经网络中。
5、如何根据数据进行智能预测:预测的过程其实都只是基于一个简单的公式:z = dot(w,x) + b (x代表着输入特征向量。w表示权重,它对应于每个输入特征,代表了每个特征的重要程度。b表示阈值,用来影响预测结果。z就是预测结果。)(w、b就是训练后得到的标准)
这个用于预测的公式我们业界称之为逻辑回归。在实际的神经网络中,我们不能直接用逻辑回归得到的结果。必须要在逻辑回归结果外面再套上一个函数。这个函数我们就称它为激活函数。激活函数非常非常重要,如果没有它,那么神经网络的智商永远高不起来。而且激活函数又分好多种。
综上,人工智能就是模拟专业人士的经验和思维(判断标准)得到事物的判定结果,会替代很多行业中的中低端人士,但是高端人才和创造性强的工作无法进行取代。无需天赋,经由训练即可掌握的技能人才会被取代,依赖天赋创造性的工作将会成为高端人士的出路。不过为了维稳就业等方面的考虑,人工智能的展开还需要很长一段时间。