leecode 中有很多binary search的题。一般而言,当一个题目出现以下特性时,你就应该立即联想到它可能需要使用二分查找:
- 待查找的数组有序或者部分有序
- 要求时间复杂度低于O(n),或者直接要求时间复杂度为O(log n)
二叉搜索的思想很好理解,但是其中的边界条件却很繁琐,很多时候写出来的代码不能很好的处理边界条件。例如:
同时,二叉搜索有很多的变体,例如:
对于这些条件和边界的总结,强烈推荐下面这篇文章,可以说是山高月小,水落石出。
https://leetcode-cn.com/problems/binary-search/solution/er-fen-cha-zhao-xiang-jie-by-labuladong/
下面我们来看具体的题目。
首先是一个最原始和典型的二叉搜索的题:
https://leetcode.com/problems/binary-search/
这道题很典型,我们采用两种方式进行求解,首先是
public int search(int[] nums, int target) {
int left = 0, right = nums.length - 1;
// right取值在数组范围内,为[left, right], 左闭右闭,
// 决定了while循环时采用left <= right
while(left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) return mid;
else if (nums[mid] < target) {
// 分为三部分,[left, mid - 1], mid, [mid + 1, right],所以left和right分别取mid + 1和mid - 1
left = mid + 1;
} else {
right = mid - 1;
}
}
return -1;
}
第二种是采用[left, right)的方式,实现代码如下:
public int search(int[] nums, int target) {
int left = 0, right = nums.length;
// right取值在数组范围内,为[left, right), 左闭右开,
// 决定了while循环时采用left < right
int mid = -1;
while(left < right) {
mid = left + (right - left) / 2;
if (nums[mid] == target) return mid;
// 分为三部分,[left, mid), mid, [mid+1, right),所以left和right分别取mid + 1和mid
else if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid;
}
}
return -1;
}
https://leetcode.com/problems/search-insert-position/
这个题目是找到insert的位置,和上题是否找到结果相比,只需要在找不到时,返回left即可。当前退出条件为left == right,所以任意返回一个即可。
public int searchInsert(int[] nums, int target) {
int left = 0, right = nums.length;
while(left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) return mid;
else if (nums[mid] > target) {
right = mid;
} else {
left = mid + 1;
}
}
// 退出条件为left == right,所以返回任意一个即可
return left;
}
https://leetcode.com/problems/find-first-and-last-position-of-element-in-sorted-array/
这道题是需要找到第一次出现的位置和最后一次出现的位置,也就是查找两次,一次通过左侧逼近找到左侧的边界,另外一次通过右侧逼近找到右侧边界,返回结果即可。
实现代码上还是采用两种循环方式,分别实现。
采用<= 的方式:
public int[] searchRange(int[] nums, int target) {
int len = nums.length;
if (len == 0) return new int[]{-1, -1};
int[] res = new int[]{-1, -1};
res[0] = left_bound(nums, target);
res[1] = right_bound(nums, target);
return res;
}
// 使用[left, right]实现
private int left_bound(int[] nums, int target) {
int left = 0, right = nums.length - 1; // [left, right] -> 决定了while循环中采用left <= right
// 左侧逼近
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] < target) { // 本质上是要找到left位置,这个位置表示left的左侧,都是小于target的集合
left = mid + 1;
} else if (nums[mid] >= target) { // 对于左侧逼近,就是相等的时候,取right = mid,这样继续查找第一个出现该值的地方
right = mid - 1;
}
}
// 注意该处没找到时,left可能等于nums.length,nums[left]也会溢出,所以排除这种情况
if (left < nums.length && nums[left] == target) return left;
else return -1;
}
// 使用[left, right]实现
private int right_bound(int[] nums, int target) {
// 右侧逼近
int left = 0, right = nums.length - 1; // [left, right] -> 决定了while循环中采用left <= right
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] > target) { // 可以理解为right右侧的位置,都是大于target的集合
right = mid - 1;
} else if (nums[mid] <= target) { // 对于右侧逼近,就是相等的时候,取left = mid + 1,这样继续查找最后一个出现该值的地方
left = mid + 1;
}
}
// 注意这个地方没找到的话left 可能为0,这样-1会溢出
if (right >= 0 && nums[right] == target) return right;
else return -1;
}
采用< 的方式,不同之处在与left和right的赋值。
public int[] searchRange(int[] nums, int target) {
int len = nums.length;
if (len == 0) return new int[]{-1, -1};
int[] res = new int[]{-1, -1};
res[0] = left_search(nums, target);
res[1] = right_search(nums, target);
return res;
}
private int left_search(int[] nums, int target) {
int left = 0, right = nums.length;
// 左侧逼近
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] < target) {
left = mid + 1;
} else if (nums[mid] >= target) {
right = mid;
}
}
if (left < nums.length && nums[left] == target) return left;
else return -1;
}
private int right_search(int[] nums, int target) {
// 右侧逼近
int left = 0, right = nums.length;
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] > target) {
right = mid;
} else if (nums[mid] <= target) {
left = mid + 1;
}
}
if (left >= 1 && nums[left - 1] == target) return left - 1;
else return -1;
}
https://leetcode.com/problems/guess-number-higher-or-lower/
这个感觉没啥好说的.. 把题目看懂最重要.
public int guessNumber(int n) {
int left = 1, right = n;
int mid = 0;
while(left <= right) {
mid = left + (right - left) / 2;
if (0 == guess(mid)) break;
else if (1 == guess(mid)) left = mid + 1;
else right = mid - 1;
}
return mid;
}
https://leetcode.com/problems/first-bad-version/
这个题相当于找到第一次出现的true,也是采用左侧毕竟的方式实现。代码如下:
public int firstBadVersion(int n) {
int left = 1, right = n;
int mid = -1;
while(left < right) {
mid = left + (right - left) / 2;
if (isBadVersion(mid)) right = mid; // 找到true,则right = mid
else left = mid + 1; // 找到的还是false,则left标记为mid + 1
}
return left;
}
https://leetcode.com/problems/find-peak-element/
找到山峰的极值,这个题也可以采用二分查找,要注意由于要对比mid 和mid + 1位置的山峰高度,所以这个时候right 最大只能为length – 1(***特别注意)。
public int findPeakElement(int[] nums) {
if (nums.length == 1) return 0;
int left = 0, right = nums.length - 1;
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] < nums[mid + 1]) { // 上升的曲线上,山峰极值之一在右侧,要注意由于要判断mid + 1,因此上面的right = nums.length - 1,不然会溢出
left = mid + 1;
} else { // 下降的曲线,山峰的极值之一在左侧
right = mid;
}
}
return left;
}