基于IDSS和Machine Learning的零售金融大数据分析(二)
接上一篇简要分析了Fintech的发展对银行业的影响,金融大数据诞生背后原因,本篇将继续讨论下面话题:
1、 金融零售客户大数据分析目的
2、 金融零售客户大数据分析定理
3、 金融零售客户大数据分析的维度
4、 金融零售客户大数据分析传统步骤
一、金融零售客户大数据分析目的
因为大部分金融从业人员都会感知到,传统金融行业面临如下两个挑战,第一是如何理解客户需求和消费能力,第二是在客户信用额度的基础上,寻找潜在产品的目标客户,以及利用现有金融数据统计分析的结果为客户开发产品。但是现在金融数据几乎全是交易类数据,这些数据几乎不具备获客基因,那么传统金融行业迫切需要使用大数据的技术来应对以上两个挑战。这就是金融零售客户大数据分析的目的。
1、臭名昭著的“360度沼泽”
一讲的大数据客户分析,很多银行都陷入一个误区,就是著名的“360度沼泽”。一到客户分析,很多银行都会提到360度客户洞察,这是在原来传统ACRM顾问所灌输的一个错误的理念,其实360度客户洞察是一个广告宣传用语,根本不存在数据可以全面描述客户,透彻了解客户。其实大家都知道,人是非常复杂的动物,信息纬度非常复杂,仅仅依靠外部信息来刻画客户内心需要根本不可能,目前AI一个发展分支就是人类的认知过程研究,让计算机来学习人对问题的思考过程,以找到好的解决问题的办法。
2、场景因数
客户大数据分析一词具有很重的场景因素,不同企业对于客户分析有着不同对理解和需求,比如城商行和股份制银行、具备消费场景的和不具备消费场景的互联网金融公司、电商企业和百货公司等对客户分析都有不同的理解,因为这些企业目前所处的场景、所服务的场景、能够搭建的场景都不相同。
每个行业对客户分析需求的信息完全不一样,信息纬度也不同,对分析结果要求也不同。不要相信那些大数据企业号称自己大数据平台、模型可以应对很多行业,然后冠以跨界的名义,虽然这些跨界的数据对客户分析有一定的作用,但是没办法保证这是强关联性,影响因子到底有多少?学习的样本是否可靠?这些都不可而知。因为每个行业客户需求分析所需要得强关联性维度完全不一样,这个行业数据维度是强关联的,但是在另一个行业却是弱关联的,没办法匹配。因为信息维度不同,那么对分析结果要求也不一样。
每个行业都有一套适合自己行业的客户分析方法,但是其核心都是为客户服务,为业务场景服务。
3、大数据分析本质
大数据分析本质有两个方面,一是从业务角度出发对用户进行分析,了解用户需求,寻找目标客户。二是银行利用统计的信息,开发出适合目标客户的产品或开展针对性强的营销活动。
二、金融零售客户大数据分析定理
大数据分析一个定理规则是三个方面:一是涉及数据的纬度需要业务场景结合,二是简单干练又要和业务强相关,三是筛选便捷又要方便进一步操作。
在金融大数据方面很多传统银行面临两个很大误区,误区一是认为客户大数据分析数据纬度越多越好,Y标签数据越丰富越好。误区二是对输入的数据还设定了权重甚至建立了模型,搞的大数据平台是一个巨大而负责的工程。
1、维度以信用信息和人口属性为主
所有信息都是信用信息:客户分析的目的是寻找目标客户,其必须是具有潜在消费能力的用户;信用信息可以直接证明客户的消费能力,是客户分析中最重要和基础的信息,包含消费者工作