暴力破解法练习(四):
小明最近在教邻居家的小朋友小学奥数,而最近正好讲述到了三阶幻方这个部分,三阶幻方指的是将1~9不重复的填入一个3x3的矩阵当中,使得每一行、每一列和每一条对角线的和都是相同的。
三阶幻方又被称作九宫格,在小学奥数里有一句非常有名的口诀:“二四为肩,六八为足,左三右七,戴九履一,五居其中”,通过这样的一句口诀就能够非常完美的构造出一个九宫格来。
4 9 2
3 5 7
8 1 6
有意思的是,所有的三阶幻方,都可以通过这样一个九宫格进行若干镜像和旋转操作之后得到。现在小明准备将一个三阶幻方(不一定是上图中的那个)中的一些数抹掉,交给邻居家的小朋友来进行还原,并且希望她能够判断出究竟是不是只有一个解。
而你呢,也被小明交付了同样的任务,但是不同的是,你需要写一个程序~
输入格式
输入仅包含单组测试数据。
每组测试数据为一个3x3的矩阵,其中为0的部分表示被小明抹去的部分。
对于100%的数据,满足给出的矩阵至少能还原出一组可行的三阶幻方。
输出格式
如果仅能还原出一组可行的三阶幻方,则将其输出,否则输出“Too Many”(不包含引号)。
样例输入
0 7 2
0 5 0
0 3 0
样例输出
6 7 2
1 5 9
8 3 4
数据规模和约定
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
分析:
(这个题我最先的思路是想通过遍历把所有排列结果都排出来,但是效果不是很好,后来看了其他人的解法重写的)
- 由题意可知我们可以把三阶幻方的结果直接全部罗列出来一共八个结果。
- 然后可以直接把输入的样例直接已有的八个结果一个一个的比对。
解决思路:
- 当比对位置为0,直接跳过
- 比对非零数字,不同直接跳出此轮循环
#include <stdio.h>
#include <string.h>
int main(){
//所有幻方结果
int magicData[8][9] = {{8,1,6,3,5,7,4,9,2},
{6,1,8,7,5,3,2,9,4},
{4,9,2,3,5,7,8,1,6},
{2,9,4,7,5,3,6,1,8},
{6,7,2,1,5,9,8,3,4},
{8,3,4,1,5,9,6,7,2},
{2,7,6,9,5,1,4,3,8},
{4,3,8,9,5,1,2,7,6}};
//输入的样例
int testData[3][3];
//为了便于比对,用一个维数组来保存输入的样例
int test[9];
int i, j, k = 0;
int count = 0;
//用来保存匹配成功的幻方的索引
int magicIndex;
//这里其实可以直接用一位数组来保存,懒癌晚期不想改了
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
scanf("%d", &testData[i][j]);
test[k++] = testData[i][j];
}
}
for (i = 0; i < 8 && count < 2; i++) {//当匹配的结果大于1就可以直接输出TooMany
for (j = 0; j < 9; j++) {
if ((test[k] != 0) && (test[k] != magicData[i][j])) {
break;
}
k++;
}
k = 0;
if(j == 9) { //不满足的时候j<9
count++;
magicIndex = i;
}
}
if (count > 1) {
printf("Too Many");
} else {
for (j = 0; j < 9; j++){
printf("%d ",magicData[magicIndex][j]);
if ((j+1) % 3 == 0){
printf("\n");
}
}
}
return 0;
}