三阶幻方推导(组合数学)

本文介绍了如何利用组合数学推导3阶幻方,通过分析每行每列和对角线数字的和,得出每个位置的数字,并探讨了不同数字出现的次数。最后给出了解决此类幻方的一般思路和数量计算。
摘要由CSDN通过智能技术生成

在华南师大版本的组合数学一书中,提到了一个数学故事——直接上图。

这里涉及到一个新的词语——幻方。相信很多人都玩过数独,就是在一个n*n的矩阵中填入0-9十个数,使得每行每列以及写对角线的和均相等。这里,幻方可以表示成一个3*3方阵\begin{pmatrix} 4 & 9& 2\\3 &5 &7 \\ 8&1 &6 \end{pmatrix}

这里我们并不是要对这个矩阵进行分析,而是要推导出这个矩阵是如何得到的,即是我们自己“创造”幻方!

解决这个幻方问题之前......问题是什么?所以我们先把里面的数学问题抽象出来——

利用1-9九个数字,不重复的填入一个3阶方阵,使得每行,每列,以及对角线每个数字的和相等。

“好难诶,怎么下手啊?”“让我平白无故构造一个矩阵?”

其实这个问题很简单,不就填充数字嘛!不过这种填充方法并不是盲目的!我们可以发现,既然每行每列的数字之和都相等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值