在华南师大版本的组合数学一书中,提到了一个数学故事——直接上图。
这里涉及到一个新的词语——幻方。相信很多人都玩过数独,就是在一个n*n的矩阵中填入0-9十个数,使得每行每列以及写对角线的和均相等。这里,幻方可以表示成一个3*3方阵。
这里我们并不是要对这个矩阵进行分析,而是要推导出这个矩阵是如何得到的,即是我们自己“创造”幻方!
解决这个幻方问题之前......问题是什么?所以我们先把里面的数学问题抽象出来——
利用1-9九个数字,不重复的填入一个3阶方阵,使得每行,每列,以及对角线每个数字的和相等。
“好难诶,怎么下手啊?”“让我平白无故构造一个矩阵?”
其实这个问题很简单,不就填充数字嘛!不过这种填充方法并不是盲目的!我们可以发现,既然每行每列的数字之和都相等