【读论文-07】-GCN-LSTM-滑坡位移预测
方法总结
1. 方法概述
论文提出了一种结合图卷积网络(GCN) 和 长短期记忆网络(LSTM) 的混合模型(GCN-LSTM),用于预测滑坡引起的累积变形。该方法分为两个主要步骤:
- 空间依赖性建模:使用GCN提取地质、地貌和地理空间特征之间的非欧几里得关系。
- 时空依赖性建模:通过GCN-LSTM结合空间特征和时间序列数据(PS-InSAR变形数据)进行预测。
2. 特征工程
输入特征(特征工程)
论文使用了多源数据作为输入特征,分为两类:
-
地质与地貌特征:
• 地形特征:高程(Elevation)、坡度(Slope)、坡向(Aspect)、总曲率(Total Curvature)、平面曲率(Plan Curvature)、剖面曲率(Profile Curvature)。
• 水文特征:地形湿度指数(TWI)、河流功率指数(SPI)、流向(Flow Direction)。
• 地质特征:地质图(Geology)、土地利用类型(Land Use)。 -
遥感与植被特征:
• NDVI(归一化植被指数):反映植被覆盖情况。
• SAR数据:通过永久散射体干涉测量(PSI)获取的形变速率(Velocity)和时间序列形变数据。
特征处理
• 离散化:连续变量(如坡度、曲率)被分类为离散区间,以减少噪声并适应模型需求。
• 归一化:采用Min-Max归一化将特征缩放到[0,1]范围,避免量纲差异影响模型训练。
• 特殊处理:
• 坡向(Aspect):由于是周期性变量,通过正弦和余弦变换转换为两个特征,以保留其空间关系。
3. 输出值(预测目标)
• 标签(Labels):
• 累积形变量:通过PS-InSAR技术(COSMO-SkyMed卫星数据)获取的滑坡区域地表形变时间序列(2012–2016年用于训练,2015–2019年用于验证)。
• 形变速率(Velocity):在GCN回归模型中作为中间输出,用于构建空间依赖关系。
• 预测目标:
• 未来时间点的滑坡累积形变(毫米级精度)。
4. 模型架构与训练
GCN-LSTM模型
-
GCN部分:
• 输入:地质、地貌特征 + PS-InSAR形变速率。
• 输出:节点嵌入(Node Embeddings),捕捉空间依赖关系。
• 关键参数:
◦ 邻接矩阵(A):基于Pearson相关系数距离构建(阈值0.1)。
◦ 层数:2层GCN,节点数分别为20和12。 -
LSTM部分:
• 输入:GCN输出的空间特征 + 时间序列形变数据。
• 输出:形变预测值。
• 关键参数:
◦ 2层LSTM,每层400个节点。
◦ 序列长度:4个时间步长,预测未来1个时间步。
对比模型
• 基准模型:RNN、GRU、LSTM(仅时间依赖)。
• 混合模型对比:GCN-GRU(验证GCN与LSTM组合的优势)。
5. 实验结果
• 评估指标:MAE(平均绝对误差)、MSE(均方误差)、RMSE(均方根误差)、R²(决定系数)。
• 性能对比:
• GCN-LSTM的MAE为0.20 mm,优于LSTM(0.89 mm)和GCN-GRU(0.32 mm)。
• 92%的预测点绝对误差小于4 mm,67%的预测点误差小于2 mm。
• 可视化验证:形变预测图与真实PS-InSAR数据高度吻合(图5-8)。
6. 创新点
- 空间-时间联合建模:首次将GCN(空间)与LSTM(时间)结合用于滑坡形变预测。
- 非欧几里得关系处理:通过GCN捕捉地质特征的图结构依赖,优于传统CNN/RNN。
- 高精度预测:毫米级形变预测(误差<4 mm)支持灾害早期预警。
7. 局限性
• 数据需求高:依赖PS-InSAR和多源地理数据,可能限制在无卫星覆盖区域的适用性。
• 计算成本:GCN-LSTM需大量超参数调优(如邻接矩阵阈值、层数)。
总结:论文通过GCN-LSTM模型有效融合空间与时间特征,实现了滑坡形变的高精度预测,为地质灾害监测提供了新方法。
摘要
灾害管理和基础设施组织的一个关键组成部分是预测由滑坡引起的累积变形。在变形预测中,一个关键点是考虑特征之间的时空关系和相互依赖性,例如地质、地貌和地理空间因素(诱发因素)。本研究建议使用能够建立时间和空间连接的算法来解决这一重要问题。
本研究提出了一种改进的图卷积网络(GCN),将长短时记忆(LSTM)网络结合在内(GCN-LSTM),并将其应用于意大利南部 Moio della Civitella 滑坡的累积变形预测。在我们提出的深度学习算法(DLA)中,考虑了两种数据类型:第一种是地质、地貌和地理空间信息;第二种是通过永久散射体干涉测量(PSI)获得的累积变形数据,前者作为特征输入,后者作为标签和目标。
本方法分为两个处理策略:
(a) 首先,使用 GCN 回归模型提取配对数据点之间的空间相互依赖性,该模型基于 PSI 计算的速度以及描述控制性诱发因素的数据;
(b) 其次,应用 GCN-LSTM 模型,根据第一步获得的相关距离,确定时空依赖性,并预测累积滑坡变形(DLA 的标签)。
模型性能的对比评估表明,GCN-LSTM 的效果优于其他四种不同的深度学习算法,包括循环神经网络(RNN)、门控循环单元(GRU)、LSTM 和 GCN-GRU。为了验证模型的准确性,本研究计算了真实变形与预测变形之间的绝对误差,在 92% 的数据点上,该误差低于 4 mm。
1 引言
滑坡是全球最常见的地质灾害之一,其成因包括强降雨、地震、暴风雪以及人为活动,如森林砍伐、施工和开挖(Keefer 1984;Iverson 2000;Bozzano et al. 2004;Guerriero et al. 2021;Picarelli et al. 2022)。在城市地区,由于建筑物和人口的高密度分布,滑坡可能造成严重破坏,导致重大财产损失、人身伤害和人员伤亡,并可能破坏交通、通信等关键基础设施(Miele et al. 2021;Liang et al. 2022)。
减少城市滑坡风险的关键措施包括合理评估边坡稳定性、规范开发活动以及实施完善的早期预警系统(Bozzano et al. 2011;Gao et al. 2022;Tsironi et al. 2022)。此外,精确且可靠地预测城市区域的累积变形也是降低滑坡风险的重要手段之一,这正是本文的研究目标(Chen et al. 2017;Confuorto et al. 2022)。
意大利南部的亚平宁山脉是全球滑坡密度最高的地区之一(Guerriero et al. 2019;Di Carlo et al. 2021)。例如,位于萨莱诺省的 Moio della Civitella 镇,其城市聚落长期受到滑坡的破坏(Di Martire et al. 2015;Infante et al. 2019)。
预测滑坡的累积变形具有挑战性,因为这涉及到在时间维度上迁移历史滑坡信息。此外,沉降覆盖下的缓慢位移进一步增加了预测的难度。人类活动的干预还可能阻碍滑坡典型形态的形成和识别。
追踪影响居民区的滑坡至关重要,有助于准确识别滑坡区域并理解其演化过程,这些信息对于未来活动的评估具有重要参考价值。地貌和地理空间数据的映射、预测和分类可能有助于分析滑坡的形成及其发生机制(Del Soldato et al. 2017;Rosi et al. 2018)。
利用卫星遥感技术,可以在高空间分辨率下识别和监测城市滑坡(Scaioni et al. 2014;Nolesini et al. 2016;Amitrano et al. 2021;Khalili et al. 2023d)。该技术能够记录有限的变形速率,并在大范围区域内进行监测,从而降低成本并减少计算时间(Tofani et al. 2013;Di Traglia et al. 2021;Macchiarulo et al. 2022)。
基于合成孔径雷达(SAR)影像的方法(Solari et al. 2020)已广泛应用于此领域,可生成多时相变形速率分布图,从而支持沉降覆盖下的滑坡识别及其回溯和实时监测(Foumelis et al. 2016)。永久散射体干涉测量(PSI)(Ferretti et al. 2001)是一种 SAR 影像处理技术,可高精度测量地表随时间变化的运动。该方法利用 SAR 影像中的稳定散射点(PSs)作为参考点,为地面沉降、火山活动、构造过程、缓慢滑坡及其他地表变形提供精确且长期的监测数据(Zhou et al. 2009;Lu et al. 2012;D’Aranno et al. 2021;Khalili et al. 2023d, b)。
在 COSMO-SkyMed(CSK)卫星任务中获取的 X 波段影像,是一种特别适用于提取城市滑坡变形数据的卫星产品。其高空间分辨率和短重访周期使其能够以高时间分辨率和高精度测量地表变形,从而诊断滑坡运动的演变(Costantini et al. 2017;Di Martire et al. 2017;Khalili et al. 2023a;Confuorto et al. 2022)。因此,在使用 PSI 技术处理 CSK 影像后,可生成高价值的数据集,并将其作为深度学习算法(DLAs)的标签数据,用于预测地表累积变形的演变趋势。
多种机器学习算法(MLA)已被应用于滑坡的精准预测与预警(Zhou et al. 2017;Gan et al. 2019)。这些方法包括贝叶斯网络(Chen et al. 2017)、逻辑回归(Wang et al. 2017)、决策树、随机森林(Hong et al. 2016)以及支持向量机(Liu et al. 2021),它们在滑坡发生的建模与预测中被广泛采用。
一方面,在大多数时间序列预测任务中,深度学习算法(DLAs)相较于传统统计模型表现更优(Confuorto et al. 2022)。尽管多元回归模型(Krkač et al. 2020)、自回归积分移动平均(ARIMA)模型(Zhang 2003)及其他传统方法可用于单变量时间序列预测(Zhang 2003;Xu and Niu 2018),但它们难以有效描述多变量时间序列的动态行为。
另一方面,通过集成多层处理单元,DLAs 可以分析具有多个维度的数据集,提取学习特征并捕捉非线性依赖关系(Li et al. 2020;Ma and Mei 2021)。近年来的研究表明,DLAs 在地表变形预测方面展现出了巨大潜力(Jiang and Chen 2016;Hajimoradlou et al. 2020;Hua et al. 2021)。
两类常见的 DLAs 包括循环神经网络(RNNs)和卷积神经网络(CNNs)。RNNs(如 LSTM 和 GRU)是一种常用于序列数据处理的神经网络架构,它们能够在时间步之间传递信息,使网络能够记忆过去的输入数据,从而适用于时间序列预测任务。而 CNNs 主要通过在输入数据的局部区域应用卷积滤波器进行处理,它们更适用于需要捕捉空间关系的任务。因此,RNNs 适用于过去输入会影响未来预测的任务,而 CNNs 更适用于强调输入数据空间关系的任务。
这些 DLAs 在滑坡预测领域展现出广阔的应用前景,并有望显著提升预测精度,为灾害风险管理提供宝贵的信息支持(Azarafza et al. 2021;Dao et al. 2020;Habumugisha et al. 2022;Huang et al. 2020;Orland et al. 2020;Saha et al. 2022;Shirzadi et al. 2018)。
另一类深度学习算法(DLAs)是图神经网络(GNNs),这是一类专门处理图结构数据的神经网络算法。GNNs 通常由多个计算层组成,每一层都会聚合邻居节点的信息并更新节点表示。近年来,GNNs 在多个领域展现出了高效性和有效性,如交通预测、人类手势检测以及城市流量预测(Yu et al. 2018;Huang et al. 2020;Wang et al. 2020)。
图卷积网络(GCNs)是 GNNs 的一种变体,它利用图卷积操作在图的节点和边之间传播信息(Khalili et al. 2023c)。与传统的卷积神经网络(CNNs)处理规则的网格状数据不同,GCNs 将卷积操作推广到图结构数据,使其能够学习图中节点的表示,并考虑图结构的拓扑信息。这使得 GCNs 能够捕捉节点之间的复杂关系,并在图中进行更精准的预测。
在预测滑坡引起的累积变形方面,GNNs 通过建模地质、地貌和地理空间等滑坡易发因素之间的相互作用,提高了预测的准确性。由于 GNNs 能够充分考虑这些因素之间的空间关系,其预测能力优于仅依赖单节点特征信息的传统机器学习(MLAs)和深度学习算法(DLAs)(Kuang et al. 2022;Zhou et al. 2021;Zeng et al. 2022)。
在本研究中,我们应用了一种先进且协同优化的图神经网络(GNNs)变体——GCN-LSTM,对滑坡累积变形的时间序列数据及其诱发因素进行建模,以预测研究区域未来的累积变形,并考虑特征之间的时空依赖性。
所提出的建模策略分为两个部分:首先,采用单一的 GCN 模型来检测初始时间帧中配对数据点之间的空间依赖关系;然后,使用 GCN-LSTM 模型来识别配对数据点之间的时空依赖性,并基于永久散射点(PS 点)的时间序列作为标签,以诱发因素作为特征,预测由滑坡引起的累积变形。
与其他深度学习算法(DLAs)进行比较后,结果表明 GCN-LSTM 优于所有传统 DLAs。接下来的章节将详细描述研究区域,并分析和讨论用于开发该算法的数据集。随后,将呈现实验结果并给出结论。
2 研究案例
Moio della Civitella 滑坡位于意大利南部萨莱诺省的 Cilento、Vallo di Diano 和 Alburni 国家公园内。滑坡影响了 Moio della Civitella 村庄所在的斜坡,海拔范围从 600 m 到 200 m,地貌特征为典型的丘陵形态,坡度较小。
该滑坡发生在阿尔卑斯山脉萨拉切诺组(Saraceno Formation)的 Crete Nere 地层,该地层主要由含碳酸盐夹层的页岩(argillites)和风化的硅质碎屑岩(siliciclastic arenites)组成。滑坡区域的地质结构特征与意大利亚平宁山脉南部区域相似,具有广泛发育的裂隙和节理,岩层层理变化极大。局部地区,萨拉切诺组上覆第四纪沉积物,这些沉积物由包裹在粉质黏土基质中的异质碎屑组成(Di Martire et al. 2015)。
岩石的岩性异质性及其随之而来的复杂水文地质行为是导致 Moio della Civitella 滑坡不稳定性的主要因素。根据 Cruden 和 Varnes(1996)的定义,这类滑坡包括流动型滑坡、旋转型滑坡和平移型滑坡(见图 1)。主要的斜坡不稳定性被认为是由古老的滑坡所引发,影响了大部分斜坡区域。根据图 1 中的地图,已识别的滑坡大多数直接影响了居民区,包括生命线设施和重要的交通路线(Infante et al. 2019;Miano et al. 2021;Mele et al. 2022)。
由于这些滑坡的存在,Moio della Civitella 区域已通过地形测量、倾斜计和 GPS 网络进行了广泛调查(Di Martire et al. 2015)。调查结果表明,滑坡的活动位移范围在约 -2 cm 到 +1.5 cm 之间。
3 材料
3.1 SAR 数据
合成孔径雷达(SAR)数据因其广泛的应用范围、高空间分辨率和某些情况下的高时间分辨率,以及能够在任何天气条件下工作,被广泛应用于滑坡研究。本研究的目标是处理来自 COSMO-SkyMed(CSK)任务的 X 波段影像,用于监测与滑坡相关的地表变形,并通过 PSI 技术对其进行处理,以为本文建议的算法提供标签。由于这些卫星产品具有高空间分辨率和较短的重访周期,因此特别适用于确定城市区域内滑坡的位置。
在分析 COSMO-SkyMed 图像堆栈的过程中,分析了 2012 年至 2016 年期间的 66 张下行图像(Infante et al. 2019),这是用于本研究中提出的算法(GCN)的第一步的良好起点。此外,对于 2015 年至 2019 年期间,收集了 65 张下行图像(Mele et al. 2022),这些图像可以用于实施多种深度学习算法(DLA),包括 RNN、GRU 和 LSTM,并使用提议的模型(GCN-LSTM)在第二步中预测累计变形。通过分析,生成了均匀变形率图(图 2)和变形时间序列。如表 1 所示,概述了实验过程中获取的图像。
3.2 诱发因素
3.2 诱发因素总结
一、数据来源与分类
-
数据类型:
• 地质数据:1:50,000地质图(岩性、断层等)。
• 地貌数据:10米分辨率DEM(衍生坡度、坡向、曲率、TWI、SPI等)。
• 地理空间数据:30米分辨率Landsat影像(NDVI、土地利用)。 -
数据预处理:
• 分类:连续变量(如坡度、NDVI)被离散化以适配模型需求,尽管可能损失部分信息,但提升了非线性关系捕捉能力。
• 归一化:采用最小-最大归一化([0,1]范围),对圆形变量(如坡向)使用正弦/余弦变换保留其周期性特征。
二、核心诱发因素解析
-
地形与水文指标:
• TWI(地形湿度指数):反映水积累潜力,受坡度和汇水区影响,不适用于平坦区域。
• SPI(流域功率指数):量化水流侵蚀能力,结合流量与流域面积分析。
• 曲率(总/平面/剖面):揭示地形凹凸特征,辅助识别潜在滑坡源区。 -
坡向与植被:
• 坡向:影响水土分布和植被生长,通过角度(0°-360°)表示,需特殊归一化处理。
• NDVI(归一化植被指数):评估植被健康状况(-1至+1),低值可能暗示裸露地表或城市区域。 -
地质与水文特征:
• 地质图:展示岩性分布与构造特征(如断层),为手工采集数据。
• 流向分析:基于DEM确定水流路径,标识潜在侵蚀区。
地质、地貌和地理空间数据作为诱发因素被用于本研究。这些因素包括海拔、坡度、坡向、地形湿度指数(TWI)、流域功率指数(SPI)、地质、流向、总曲率、平面曲率、剖面曲率,以及地理空间数据如归一化植被指数(NDVI)和土地利用,这些因素在本案例研究中有助于滑坡的形成(Chen et al. 2018, 2019;Achour et al. 2018)。为了学习和训练 GCN 模型,已经在上述诱发因素之间建立了关系和联系,下面将简要讨论这些因素的实际应用。
本研究中使用的主要地质、地理空间和地貌数据包括:
i) Moio della Civitella 的 1:50,000 地质图,用于研究地质背景;
ii) 10 米像素分辨率的数字高程模型(DEM),主要用于调查 Moio della Civitella 的地形和地貌特征,并获得海拔、坡度、流向、坡向、总曲率、平面曲率、剖面曲率,以及地形湿度指数(TWI)和流域功率指数(SPI);
iii) Landsat7 ETM+ 遥感影像,分辨率为 30 米,波段 1–7(时间:2012 至 2015,路径:188,行号:032),主要用于讨论 Moio della Civitella 的气候和环境特征,并获取归一化差异植被指数(NDVI)和土地利用类型。
TWI(地形湿度指数)在水文分析中用于测量一个区域的水积累情况。它指示稳态水分,并量化地形对水文过程的影响。TWI 基于坡度和上游汇水区宽度设计,最初用于丘陵链条。研究发现,TWI 与多种土壤属性相关,包括土层深度、粘土百分比、有机物含量和磷含量。TWI 的计算方法依赖于如何确定上游汇水区的范围。它不适用于平坦地区,其中有大量的水积累(Novellino 等,2021)。
坡度的强度受流动水的冲刷和渗透影响显著。SPI(流动水流动力指数)是衡量流动水的冲刷和侵蚀能力的参数。SPI 估计了水流通过沟谷侵蚀和运输作用,可能改变区域地貌的能力。为了确定流动水的侵蚀力,SPI 考虑了流量与特定流域面积之间的关系(Di Napoli 等,2021)。
曲率分析提供了关于这些致因源的位置、深度、倾斜方向和磁化率的信息。在曲率分析中,应用了一个标准的 3 × 3 移动窗口的二次曲面。总曲率被转化为剖面曲率和平面曲率,剖面曲率沿着最大坡度方向,平面曲率垂直于最大坡度方向。曲率空间的每个部分提供了重要的信息,用于确定源是二维的还是三维的。这是远程现场绘图中的一个重要考虑因素,因为它允许解释者在不直接观察的情况下区分接触面、岩脉和广泛的岩性(Di Napoli 等,2021)。
坡向(aspect)是指坡面朝向的方向,这可以影响水、土壤分布和植物生长的流动。由于这些影响,坡向在地貌学和生态学研究中是一个重要的考虑因素。通常,坡向使用指南针测量,角度范围从0到360度,其中北方表示为0/360度,东方为90度,南方为180度,西方为270度。在地质分析中加入坡向数据有助于提高我们对地质过程及其相互作用的理解(Pyrcz和Deutsch,2014)。
归一化植被指数(NDVI)衡量植被对近红外光的反射和红光的吸收。NDVI的范围为-1到+1。然而,不同类型的地表覆盖之间并没有明确的界限。在NDVI值为负数的情况下,可能表示水域;而当NDVI值接近+1时,更可能是浓密的绿色植被。当NDVI接近零时,可能是城市区域,因为没有绿色植被。高NDVI值表示植被健康状况较好,而较低的NDVI值则表示植被较差。这是一种评估植被健康的标准化方法。低NDVI值通常表示缺乏植被(Ammirati et al. 2022)。
地质图展示了地球表面岩性分布的情况。地质图显示了不同类型的岩石和沉积物的分布,以及地质结构的位置,如断层和褶皱。通常,岩石类型和松散材料会根据其类型以不同的颜色呈现。地质图上显示的是手工收集的数据(Di Napoli et al. 2022)。表面的水文特征可以通过确定每个栅格像素的流向来确定。在这个功能中,表面作为输入,然后创建一个栅格图,显示每个像素及其最陡下坡邻居之间的流向(Di Napoli et al. 2020b)。
Shuttle Radar Topography Mission (SRTM)数字高程模型(DEM)的空间分辨率从30×30米到约90×90米(约为三秒弧度)不等,覆盖了全球约80%的地区,范围从北纬60°到南纬56°。这些高程数据有多种格式可供使用,并且持续生成(Di Napoli et al. 2020a)。
本研究结合了地质、地理空间和地貌特征,并与提出的算法(GCN-LSTM)相结合,涉及到一个关键的数据分类阶段(Soares et al. 2022; Nasir et al. 2022)。这一分类过程是在QGIS软件中进行特征预处理时执行的。我们承认,离散化连续变量可能会导致信息的丢失,因为引入了人工层次,但这是基于我们方法论的一个公认的折中。将连续变量进行分类的决定源于所提模型的性质和我们地理空间数据的特定特点。像GCN和LSTM这样的模型在处理分类特征时,更有效地捕捉非线性和复杂的依赖关系(Cui et al. 2020; Chen et al. 2022)。分类后的特征能够更好地表示我们地理空间数据中的复杂、多维关系,从而有助于模型的可解释性(Kshetrimayum et al. 2023)。
地理空间数据本质上是复杂和多维的,描述了地球表面或其附近位置的物体或事件。有效表示这些数据需要有效的分类技术,处理数值和分类数据的混合。分类使得高级数据分析方法成为可能,如地理空间分析、机器学习算法(MLAs)和深度学习算法(DLAs)。这些方法能够揭示通过原始数据可能难以理解的模式和关系。
在分类之后,数据归一化是我们代码实现中的下一步。归一化将数据缩放为均值为0,标准差为1,确保每个特征对分析的贡献均等,并防止某些特征的偏向。在深度学习模型如GCN和LSTM中,归一化输入数据可以改善训练过程中模型的收敛性,并减少梯度消失或爆炸的风险。我们使用了最小-最大归一化方法,将所有特征缩放到[0, 1]的范围内(Ioffe和Szegedy 2015;Borkin等人2019)。
我们同意关于归一化固有类别变量的潜在问题,但我们认为由于GCN-LSTM模型的架构,归一化是必不可少的。具有较大幅度的特征可能会对学习过程产生不成比例的影响,因此归一化确保所有特征在相似的尺度上并对模型的学习贡献均等。我们的归一化过程也尊重了固有类别变量的特性。例如,我们特别考虑了“Aspect”特征,这是一种圆形变量,使用保留其圆形特性的方式进行归一化。传统的归一化技术将线性变量缩放到一致的范围,然而这种方法对于圆形变量并不适用,因为它会扭曲数据中的关系。因此,我们使用正弦和余弦变换将这个圆形变量转换为两个变量,从而保留数据点的圆形接近性。这一转换确保了在归一化过程中保留了“Aspect”特征的圆形性质,为后续算法的准确分析提供了正确的表示(Goodfellow等人2016)。
因此,特征分类和归一化技术的结合使用确保了特征在相似的尺度上,使得GCN-LSTM模型可以从中学习,而不会对较大幅度的特征产生偏向。这种方法对于具有显著噪声和变异性的地理空间和遥感数据至关重要。通过使用这些方法,我们可以创建更相关或更有信息量的特征,减少输入数据的大小,并可能提高我们提出的深度学习算法的计算效率。
4 方法
为了预测由滑坡引起的累计变形,需要一种时空预测策略,因为滑坡运动的发展往往揭示了运动的空间和时间特征。我们策略的第一步(图3)涉及预处理,以获得通过PSI处理技术(速度)获得的空间属性和时间序列数据集作为第二步的输入。GCN模块捕获了空间依赖变量,而LSTM模块则捕获了时间依赖变量。在分析的第一步中,有必要准备最佳的相关距离间隔,并随后通过提出的模型(GCN-LSTM)预测累计变形,并与其他基于时空依赖的深度学习算法(简单RNN、GRU和LSTM,它们基于时间依赖性工作)以及另一种名为GCN-GRU的时空依赖算法进行结果讨论和比较。
4.1 SAR 数据处理
本研究采用差分干涉雷达技术(DInSAR)及其改进方法永久散射体干涉技术(PSI) ,以高精度监测地面变形(如滑坡、沉降等)。
-
DInSAR的局限性:
• 易受时空去相关(植被变化、地表扰动)、大气延迟(水汽干扰)、轨道/地形误差影响。
• 传统精度受限,难以捕捉毫米级微小变形。 -
PSI技术的改进:
• 基于永久散射体(PS)(如建筑物、岩石等稳定目标),显著提升相干性。
• 精度提升至:
◦ 变形速率:1–2 mm/年
◦ 累计变形量:5–10 mm
• 依赖高分辨率DEM(3m × 3m像素)和多视处理(3 × 3窗口)。
二、数据处理流程
-
软件与参数设置:
• 使用SUBSIDENCE软件(加泰罗尼亚理工大学开发),基于相干像素技术(CPT)。
• 干涉图生成:
◦ 空间基线限制:<300米(减少几何失真)。
◦ 时间相位相干性阈值:≥0.7(筛选高可靠性数据)。 -
输出结果:
• 视线方向(LoS)变形速率图:量化地表运动空间分布。
• 累计变形时间序列:揭示变形动态过程。
4.2 循环神经网络(RNNs)
预测由滑坡引起的变形可以通过使用RNNs来实现。在该算法中,RNN会根据滑坡变形的历史数据进行训练,以预测未来的变形。RNN能够存储来自前几个时间步的信息,这使其能够识别数据中的模式和依赖关系。这些信息随后被用于进行有根据的预测。网络的输入包括地质、地理空间和地貌数据,而用于与提出的算法输出进行比较的标签是由滑坡引起的累计变形。最终,模型的输出预测了由滑坡引起的未来累计变形的数量和分布。该模型对灾难准备、风险评估以及深入理解滑坡背后的过程具有重要意义。RNNs是进行时间序列预测的理想选择,因为它们专门设计用于处理顺序数据,并能有效地处理随时间变化的变形时间序列数据。欲了解更多有关RNNs及其方程的详细信息,可以参考以下文献(Liao et al. 2019;Sherstinsky 2020)。
4.2.1 长短期记忆网络(LSTM)
LSTM算法是一种先进的人工神经网络,专门处理时间敏感的信息。在预测滑坡的累计变形时,它非常有用,因为它能够克服标准RNN的局限性。标准RNN的一个局限性是“梯度消失”问题(梯度消失问题是由于损失函数关于网络中权重的梯度(导数)在通过时间反向传播时变得非常小,导致网络难以学习和保留序列中早期时间步的信息)。LSTM的关键创新是使用特定的神经元,称为LSTM单元,它们具有控制信息进出单元的门,从而使网络能够在更长时间内存储和使用重要信息。该算法通过利用可以保持长期信息的记忆单元,并通过控制门来管理这些单元中信息的进出,从而操作。通过在过去的滑坡变形数据上训练LSTM,能够识别出模式并准确预测未来的变形。LSTM已被证明能够有效地处理时间序列数据中的复杂非线性关系,因此成为滑坡预测的可靠工具(Hochreiter et al. 2001;Yuan et al. 2020)。
4.2.2 门控循环单元(GRU)
GRU是一种专门为时间序列预测设计的RNN。它可以应用于多种场景,例如预测滑坡的累计变形。GRU被认为是LSTM网络的一种简化替代方案,后者是另一种用于时间序列预测的RNN类型。GRU的隐藏状态(隐藏状态是一个值向量,捕获网络在时间步长之间的记忆,隐藏状态在每个时间步长中基于输入数据和先前的隐藏状态进行更新)是基于当前输入和先前的隐藏状态更新的,使得它能够捕捉序列中之前时间步长的信息,并利用这些信息来预测未来的值。GRU的独特特点是其使用“门”来调节信息的流动,防止网络在处理新数据时丢失关键信息,从而使得GRU更容易建模序列中的长期依赖关系(Cho et al. 2014;Chung et al. 2014)。
GRU将基于历史地质、地理空间和地貌数据以及在滑坡现场随着时间变化测量的PS点数据进行训练,来预测滑坡引起的累计变形。该网络将利用这些信息识别数据中的模式并做出未来变形的预测,这些预测可以用于制定应对滑坡风险的决策。
LSTM和GRU的主要区别如下:
- 相比LSTM,GRU的参数更少,计算开销更小。
- 控制LSTM和GRU之间信息流动的机制是通过门控机制实现的。LSTM有三个门(输入门、输出门和遗忘门),而GRU只有两个门(更新门和重置门)。
- GRU没有独立的记忆单元,而LSTM有一个用于存储长期信息的记忆单元。GRU的信息存储在隐藏状态中。
- 对于长序列,RNN面临梯度消失问题。LSTM应运而生以克服这一问题。LSTM比GRU更好地处理了这一问题,但GRU也在一定程度上解决了这个问题。
4.3 图神经网络(GNN)
近年来,图神经网络(GNN)在建模图数据方面表现出了有效性。这些深度学习算法(DLA)处理结构化为图的数据,使用考虑节点相互依赖的更新函数。通过这种处理,GNN生成一个特征空间,提供有关图中节点之间关系的信息。例如,GNN可以用于分析地质、地貌和地理空间数据等因素之间的连接,以预测滑坡变形。这些因素在图中作为节点表示,它们之间的关系通过边表示。然后,GNN通过更新每个节点的表示来处理该图,并使用最终的表示来做出关于累计变形的预测。
作为对比,RNN(如LSTM和GRU)专门设计用于处理顺序数据,并识别时间步长之间的依赖关系(时间依赖性)。而GNN则针对处理图结构数据并理解节点之间的关系(空间依赖性)进行了优化(Wu et al. 2021;Behrouz and Hashemi 2022)。
4.3.1 图卷积网络(GCN)
图卷积网络(GCNs)的工作原理基于在图的各个节点间传递的滤波器参数(Cortes等,2015)。它能够在图G=(V,E)上提取新的输入特征,其中每个节点i都有一个特征空间x_i。特征空间是一个N×D的矩阵X,其中N是节点数量,D是特征数量。此外,每对节点之间的相互依赖关系通过一个N×N的0-1邻接矩阵A表示,定义如下:
A_ij的值为1或0,取决于节点i和j之间是否存在边或相互依赖关系。如果存在从i到j的路径,则A_ij=1;否则为0。在本研究中,我们使用相关距离来创建GCN建模方法中的邻接矩阵,因为0-1邻接矩阵被用来确定每对点之间的非欧几里得相互依赖关系。具体来说,首先计算区域内每对点的相关距离,然后对于相关距离在区间[0,a)(其中a<2)内的点对,将其邻接矩阵元素设为1,其余设为0。因此,超参数"a"是在所提出建模方法的第一步中通过GCN模型的超参数调优获得的。
超参数调优涉及调整GCN算法的各种参数,以优化其在特定数据集上的性能。例如,在GCN中,层数、每层的节点数以及所使用的激活函数类型都会影响算法的性能。通过调整这些参数,可以使GCN算法在特定图上表现更好。
在本研究中,我们使用皮尔逊相关系数来确定GCN中的非欧几里得相互依赖关系。皮尔逊相关系数用于衡量两个变量之间的线性相关性。通过分析节点间的皮尔逊相关系数,GCN可以确定图中的非欧几里得相互依赖关系。
本研究使用皮尔逊相关系数确定图卷积网络(GCN)中的非欧几里得相互依赖性。皮尔逊相关系数用于衡量两个变量之间的线性相关性。通过分析节点间的皮尔逊相关系数,GCN可以确定图中的非欧几里得相互依赖性。
皮尔逊相关系数计算公式:
d
(
X
,
Y
)
=
1
−
∑
i
=
1
n
(
x
i
−
x
ˉ
)
(
y
i
−
y
ˉ
)
(
x
i
−
x
ˉ
)
2
(
y
i
−
y
ˉ
)
2
d(X,Y)=1-\frac{\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})}{\sqrt{(x_i-\bar{x})^2(y_i-\bar{y})^2}}
d(X,Y)=1−(xi−xˉ)2(yi−yˉ)2∑i=1n(xi−xˉ)(yi−yˉ)
学习过程输出节点级输出矩阵Z,其中F表示每个节点的输出特征数量。需要池化操作来建模图级输出(Cortes等,2015)。网络层在时间(l+1)的隐藏状态表示如下:
H
(
l
+
1
)
=
f
(
H
(
l
)
,
A
)
H^{(l+1)}=f(H^{(l)},A)
H(l+1)=f(H(l),A)
其中H(0)=X,H(L)=Z,L表示层数。模型的不同之处仅在于激活函数f(…)的选择(激活函数是应用于神经元输出的数学函数,用于引入非线性并使网络能够建模输入数据中的复杂关系)。例如,前向传播规则可表示为:
f
(
H
(
l
)
,
A
)
=
σ
(
A
^
H
(
l
)
W
(
l
)
)
f(H^{(l)},A)=\sigma(\hat{A}H^{(l)}W^{(l)})
f(H(l),A)=σ(A^H(l)W(l))
其中W(l)是第l层的可训练权重矩阵,σ(…)是如tanh的非线性激活函数。
使用归一化邻接矩阵D̂-1/2ÂD̂-1/2(其中Â=A+I,I是单位矩阵)来确保算法稳定运行。前向传播方程设计如下(Gordon等,2021):
f
(
H
(
l
)
,
A
)
=
σ
(
D
^
−
1
/
2
A
^
D
^
−
1
/
2
H
(
l
)
W
(
l
)
)
f(H^{(l)},A)=\sigma(D̂^{-1/2}ÂD̂^{-1/2}H^{(l)}W^{(l)})
f(H(l),A)=σ(D^−1/2A^D^−1/2H(l)W(l))
在本研究中,GCN用于建模方法的第一阶段,基于12个地质特征(包括高程、坡度、总体曲率、NDWI、TWI、SPI、地质图、土地利用、流向、平面曲率和剖面曲率)创建回归模型预测速度。速度数据基于2012-2016年的时空滑坡处理获得。本步骤的主要目标是在超参数调优过程中确定最佳邻接矩阵,该矩阵基于皮尔逊相关距离的概念构建。
4.4 提出的算法(GCN-LSTM)
将GCN与LSTM相结合可以增强建模图结构数据中节点之间复杂关系的能力。通过这种方式,可以更有效地捕捉空间和时间信息。换句话说,结合GCN和LSTM提供了处理图数据复杂性的更好方法,包括节点之间的关系和随时间变化的特征。图4展示了本论文提出的基于GCN-LSTM模型的网络结构。
根据该模型,编码器和解码器构成了主要结构。图网络编码器使用多个并行的GCN模块提取具有不同时间序列的图网络的关键特征。为了处理时间序列和序列数据之间的长期和短期依赖关系,时间序列特征被传递到LSTM中,LSTM对其进行分析,并通过LSTM从序列数据中提取其他特征。之后,编码器生成一个编码对向量,该向量随后被发送到解码器,在解码器中进行解码作为最后一步。解码过程的一部分是使用多层前馈神经网络进一步分析编码向量的特征。然后,处理后的数据被传送到GCN网络中,生成预测值以进一步处理数据。
根据所使用数据的性质、如何使用超参数调优来获取它们以及数据如何使用,GCN和LSTM部分的模型中层数和节点数也将发生变化。本文将GCN-LSTM实现为最有影响力的模型,用于检测2012到2016年期间的65个累计滑坡变形时间序列的时空行为(第一步),以及2015到2019年期间的滑坡数据(第二步),共涉及4085个数据点。
5 结果与讨论
5.1 模型超参数
在提出的算法的初步步骤中,使用了GCN来确定区域内任何一对点之间的非欧几里得相互依赖性(空间依赖性);具体来说,通过2012到2016年的空间和时间处理获得的滑坡速度作为回归模型中的标签。利用十二个诱发因子,GCN被建模以确定数据点之间的最佳相关距离,这被认为是第二步预测任务中最关键的超参数。相关距离表示基于它们所获得的特征值,数据点之间的相似度,而不是它们之间的欧几里得距离。创建邻接矩阵的最佳相关距离范围是[0, 0.1),因为在调整超参数后,它提供了最好的评估指标,优于其他情景。两数据点之间的依赖性越强,它们的相关距离越接近零,因此在邻接矩阵中,选择相关距离小于0.1的一对为1,其他对则为0。因此,该区间可用于预测未来的累计滑坡变形,这也是本研究的第二个目标。表2提供了第一步建模方法的最佳超参数。
5.2 综合性能比较
在第二步中,结合了GCN和LSTM的混合模型以及另一个对比模型(包括GCN和GRU)被应用于2015至2019年的65个滑坡累计变形的时间序列数据,包含4085个PS数据点,并用于预测研究区域的未来变形;此外,由于第一步中的速度是基于2012到2016年的空间滑坡处理获得的,因此第一步中最佳的相关距离区间被用于计算第二步中的邻接矩阵。换句话说,这一区间被视为从前一时间段到新时间段之间信息传递的量,从而预测滑坡引起的累计变形。在对不同情景进行超参数调优后,为GCN部分选择了两个通道,每个通道包含20个和12个节点;此外,还为所提出的模型的LSTM部分设计了两个通道,每个通道包含400个节点。GCN-LSTM方法的超参数调优结果如表3所示。
表4报告了所有模型在四个评估指标(均方误差(MSE)、平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R²))上的预测性能(Chicco et al., 2021)。从表中可以看出,所提出的GCN-LSTM模型在所有评估指标上始终优于其他方法。这一结果表明,长短期记忆对于预测此数据集中的滑坡累计变形至关重要。根据文献,GRU与LSTM之间的显著区别在于,GRU的“包”有两个门:重置门和更新门,而LSTM的“包”有三个门:输入门、输出门和遗忘门。这意味着GRU的门比LSTM少,因此它比LSTM简单;此外,当数据集较小时,通常会选择GRU,否则会使用LSTM。因此,这一结果验证了我们的结论,因为本研究使用了4085个数据点。
此外,由于传统的深度学习算法(DLA)如简单的RNN、GRU和LSTM无法检测数据点之间的空间依赖关系,因此它们的表现较差。事实上,通过将GCN引入LSTM,GCN-LSTM能够有效地将图结构信息融入到序列数据中。GCN-LSTM能够比RNN、LSTM和GRU更好地推广到未见过的数据,因为它能够建模图结构信息,这种信息更具表现力,能够帮助模型更有效地捕捉数据中的潜在模式。另一个原因是GCN能够更好地处理非欧几里德关系,这意味着GCN可以有效处理图中节点之间的非欧几里德依赖关系,从而比RNN、LSTM和GRU表现得更好,而后者仅限于欧几里德和时间关系。
因此,GCN-LSTM模型在建模时间序列中的长短期依赖性方面表现出色,显著提高了预测性能,超过了传统方法。如表4所示,在第二步的预测任务中,GCN-LSTM超越了所有三种深度学习算法(如RNN模型),并且在所有评估指标上都优于其时空对应模型GCN-GRU的测试集表现。
5.3 可视化
为深入理解所提出的GCN-LSTM预测模型的工作机制,右侧图像展示了2019年3月19日的累积变形预测结果(图5),并与同期实际变形监测数据进行了对比。该图显示:
• 预测精度:模型对正/负变形量及位置的预测平均绝对误差小于0.02
• 区域表现:
• 红框与蓝框:成功预测变形量超过2厘米的区域
• 黑框:准确识别正负变形混合区域
• 白框:精确捕捉变形量低于2厘米的区域
模型预测结果与观测数据高度吻合,证实其能可靠预测累积变形及滑坡风险。这种一致性表明GCN-LSTM有效融合了地质、地貌和地理空间数据之间的复杂关系。
误差评估
通过绝对误差指标生成预测变形与实际变形的误差分布图(图6),并将误差划分为11个区间进行颜色编码。结果显示:
• 92%的监测点预测误差小于4毫米
• 其中2528个点(占61.9%) 误差低于2毫米
趋势验证
选取2018年7月22日至2019年3月19日期间16个测试时段(占总数据25%)进行验证。图7显示:
• GCN-LSTM预测曲线与实际变形趋势高度一致
• 随机选取的11个误差区间代表点均呈现规律性对应
这些结果表明,该模型可实时预测滑坡累积变形,为灾害决策提供可靠支持。
(注:所有百分比数据均基于研究区4085个永久散射体监测点的计算结果)
根据图8,本文使用GCN-LSTM预测滑坡引起的累计变形的结果看起来非常有前景。92%的点(包括P1、P2、P3和P4图)具有小于4毫米的绝对误差,其中67%的点(包括P1和P2)误差小于2毫米,这表明该算法能够有效地捕捉数据中的潜在模式。由于算法能够更好地识别图中节点之间的复杂关系,因此在预测中实现了较高的精度。点图P5、P6、P7、P8、P9、P10和P11表示不到8%的所有PS点,其误差超过5毫米。尽管如此,正如这些图所示,预测变形的趋势与实际变形趋势一致,经过验证的GCN-LSTM模型工作正常。
6 结论
考虑到特定区域(Moio della Civitella)内每对数据点的时空关系,本文基于结合深度学习算法(DLA)的GCN-LSTM模型,研究了滑坡累计变形的预测。通过实现非空间深度学习算法(如RNN、GRU和LSTM),我们得出结论,滑坡累计变形受到数据点之间空间相互依赖性的高度影响,因为非空间实现相比时空方法导致了较弱的评估指标。所提议的DLA(GCN-LSTM)有效地解决了将非欧几里得空间依赖关系纳入考虑的问题。同时,它通过监测数据点随时间变化的时间序列特性,考虑了滑坡的时序特征。本研究的核心发现可以总结如下:
- 通过实施技术性的GCN回归算法,在2012到2016年的四年时间框架内,通过非欧几里得相关距离捕捉了每对数据点之间的相互依赖关系。
- 在上述GCN方法中定义了一个新的超参数,通过同时调整所有超参数来创建最佳的邻接矩阵。
- 从GCN方法中获得的超参数被用于提取每对数据点之间的相互依赖关系,并应用于两个时空模型(GCN-LSTM和GCN-GRU),用于2015至2019年的累计滑坡变形时间序列。
- 本研究在意大利Moio della Civitella滑坡区域进行了实验研究。在这项研究中,GCN-LSTM模型成功捕捉了滑坡数据集的空间和时间行为,为基于时空模型的滑坡累计变形时空预测提供了有前景的结果。GCN-LSTM模型在预测滑坡方面比简单RNN、GRU、LSTM等RNN模型以及另一个时空算法(如GCN-GRU)更有效。
总之,我们的工作为滑坡预测领域提供了有价值的贡献,通过展示GCN-LSTM在这一类问题中的有效性。结果表明,GCN-LSTM是一个有前景的算法,用于预测滑坡引起的累计变形,并强调了将图结构信息纳入时序数据的潜在好处。结合各种特征的时空模型在多种应用中具有提高预测精度的潜力。以下是一些未来在时空模型方面的工作建议:
-
引入更多样化的特征:通过引入更多样化的特征,例如降雨数据的时间序列,时空模型的性能往往可以得到提升。这些特征能够提供额外的上下文,有助于模型更好地捕捉数据中的潜在模式和关系。
-
先进的深度学习架构:开发更先进的深度学习架构,如Transformer或基于注意力机制的模型,可能有助于提高时空模型的性能。这些模型有助于捕捉特征和目标变量之间更复杂的关系。
-
多模态数据融合:另一个改进方向是集成来自多个来源的数据,例如卫星影像、气象数据和地面传感器,以全面了解导致特定事件的条件。这将有助于构建更全面的时空模型,提升预测能力。
腾讯元宝问答 链接
参考文献
[1] Khalili M A, Guerriero L, Pouralizadeh M, et al. Monitoring and prediction of landslide-related deformation based on the GCN-LSTM algorithm and SAR imagery[J]. Natural Hazards, 2023, 119(1): 39-68.