[1] Nava L, Carraro E, Reyes-Carmona C, et al. Landslide displacement forecasting using deep learning and monitoring data across selected sites[J]. Landslides, 2023, 20(10): 2111-2129.
期刊
Landslides( JCR Q1 )
作者介绍
Lorenzo Nava Email: lorenzo.nava@phd.unipd.it
GitHub 链接
ResearchGate Lorenzo Nava
实验室 Machine Intelligence and Slope Stability Laboratory
Department of Geosciences, University of Padova, Padua, Italy
这篇论文的主要内容是关于使用深度学习(DL)方法来预测滑坡位移,并探讨了七种不同的深度学习技术在不同滑坡案例中的表现。以下是论文的核心要点:
-
研究背景与目标:
该研究测试了七种深度学习方法(MLP, LSTM, 2xLSTM, GRU, Bi-LSTM, 1D CNN, Conv-LSTM)在四个不同滑坡案例中的效果。这些滑坡在地理位置、影响因素、地质背景、时间步长和测量传感器等方面各不相同。 -
实验结果与分析:
- 模型表现:没有任何一个模型能在所有研究案例中都表现最好,但总体来说,MLP、LSTM和GRU在四个滑坡案例中表现较为一致,能够在不同情境下提供可靠的预测。
- Conv模型的表现最差:在所有案例中,Conv模型的预测结果最差。
- Conv-LSTM模型:在Baishuihe滑坡的预测中,Conv-LSTM模型表现最佳,尤其是对于季节性强的滑坡。它能捕捉到滑坡位移的周期性变化,尤其适用于具有强季节性的滑坡预测。
- Bi-LSTM与2xLSTM:Bi-LSTM在Lamosano滑坡中的表现较好,但2xLSTM在所有案例中都没有提供竞争力的结果。
-
滑坡位移预测的可靠性:
- 研究表明,使用深度学习进行滑坡位移预测时,仅使用传统的预测评估指标(如RMSE和R²)并不能全面反映模型的预测效果。特别是在不同滑坡的加速阶段,模型的表现可能会有所不同。例如,在Sant’Andrea滑坡中,MLP模型对最大位移的预测最接近实际值,而LSTM和GRU则有所低估。
- 对于预测滑坡加速的准确性,模型必须能准确预测加速的开始时间和最大位移峰值。
-
模型的局限性与未来改进:
- 尽管深度学习模型在某些滑坡案例中表现良好,但在实际应用于操作性早期预警系统(EWS)时仍需改进。未来的研究可以考虑引入天气预报数据等外部影响因素,以提高预测精度,特别是对于时间分辨率较低(如按月)的情况。
- 结合不同的气象数据(如降水量和温度)或土壤的地质结构可能有助于提升模型的精度。同时,集成多种预测算法(如MLP和LSTM的组合)可能会提升预测的准确性。
-
对滑坡早期预警系统的贡献:
研究表明,深度学习可以成功应用于滑坡早期预警系统(EWS),但没有一个单一的模型或配置能够普遍适用于所有情况。每个滑坡的特征不同,最佳的预测结果需要依赖于具体的滑坡情况,采取特定的校准方法。 -
总结:
深度学习方法为滑坡位移预测提供了一种有前景的技术手段,但为了在操作性早期预警系统中取得最佳效果,仍需要进行进一步的改进和优化。特别是要结合具体滑坡的特征,采用定制化的模型和技术。
总体而言,论文表明深度学习在滑坡位移预测中的应用是有效的,尤其在季节性强的滑坡中表现突出,但需要在模型的精度和外部影响因素的整合上进行进一步的提升。
全文翻译
摘要
准确的滑坡预警系统是一种可靠的风险降低策略,能够显著减少人员伤亡和经济损失。为此,已有多种机器学习方法被研究,其中深度学习(DL)模型展现出了卓越的预测能力。然而,目前的比较研究中,仅有长短期记忆网络(LSTM)和门控循环单元(GRU)这两种DL模型被深入探讨。然而,实际上还有多种其他DL算法同样适用于时间序列预测任务。
在本研究中,我们评估、比较并描述了七种用于预测未来滑坡位移的DL方法:多层感知器(MLP)、LSTM、GRU、一维卷积神经网络(1D CNN)、双层LSTM(2xLSTM)、双向LSTM(bi-LSTM)以及由1D CNN与LSTM组成的组合架构(Conv-LSTM)。本研究聚焦于四个具有不同地理位置、地质环境、时间步长维度和测量仪器的滑坡案例。其中两个滑坡位于人工水库环境中,另外两个滑坡的位移则主要受降雨影响。
研究结果表明,MLP、GRU 和 LSTM 模型在所有四种情景中均能做出可靠预测,而ConvLSTM模型在白水河滑坡中表现最佳,该滑坡具有显著的季节性。此外,研究未发现水库内外滑坡预测性能存在明显差异。研究还发现,MLP更适合预测最高的位移峰值,而LSTM和GRU则更适合建模较低的位移峰值。
我们相信,这项研究的发现将为构建基于深度学习的滑坡预警系统(LEWS)提供宝贵的帮助。
关键词:滑坡灾害 · 遥感 · 滑坡预警 · 滑坡预测 · 人工智能
引言
引出话题
每年,滑坡这一重大全球地质灾害都会造成大量人员伤亡和经济损失(Froude 和 Petley,2018)。预测滑坡未来的发展趋势对于风险评估以及为由降雨、水库和地下水波动、地震以及人为活动等外部诱因引发的滑坡设计可靠的预警系统至关重要(Aleotti 和 Chowdhury,1999)。然而,预测滑坡未来的行为极具挑战性,因为其演化过程通常不呈线性模式。多个外部因素(尤其是降雨和水库水位变化)以不同的强度和程度共同影响滑坡的未来位移。
预测类型
滑坡位移预测主要有两种方法:基于物理机制的方法和数据驱动的方法(Huang 等,2017)。物理模型主要依赖蠕变理论、实验室测试以及现场测得的物理特征来模拟滑坡行为。而数据驱动模型因其方法简便、预测精度高、成本低和可扩展性强而被更广泛地应用(Corominas 等,2013)。
机器学习方法
近年来,人工智能(AI)特别是深度学习技术在滑坡位移预测方面取得了突破性进展。这些方法不仅利用滑坡位移数据本身,还能将其他诱发因素纳入考虑,从而实现更为精准的未来速度预测。三峡水库的滑坡案例已成为实施、评估和发展多种基于AI的滑坡预测技术的重要基准(Yao 等,2015)。
多种机器学习(ML)模型已被用于滑坡预测,如人工神经网络(ANN)(Du 等,2013)、支持向量机(SVM)(Zhu 和 Hu,2012;Zhou 等,2016;Zhu 等,2017;Wen 等,2017;Miao 等,2018;Ma 等,2020;Wang 等,2020, 2022;Han 等,2021;Zhang 等,2021)、高斯过程(Liu 等,2014)以及极限学习机(ELM)(Lian 等,2015;Cao 等,2016;Huang 等,2017;Zhou 等,2018a;Wang 等,2019)。在这些研究中,常常结合使用一些影响因素,包括历史位移数据、降雨信息、水库水位及其变化等。
此外,Li 等(2019)将混沌理论引入SVM模型,提出了一种基于小波分析-Volterra滤波器的模型(混沌WA-Volterra模型)。该模型将累计位移数据分解为高频和低频成分,使用混沌理论重构每一频率的空间结构,并作为模型输入,用于识别滑坡位移中的混沌特征。
最近研究
近年来,还出现了深度置信网络(DBN)、基于LSTM的架构、门控循环单元网络(GRU)等DL技术应用于滑坡预测(Yang 等,2019;Xing 等,2019;Li 等,2020;Zhang 等,2021;Guo 等,2022)。例如,Yang 等(2019)研究了滑坡位移与主要触发因素之间的关系,利用LSTM模型预测滑坡的周期性位移。该模型能够从历史变形时间序列中学习,建立不同时间点滑坡状态之间的联系。结果表明,LSTM模型的性能优于SVM技术。
Wang 等(2022)测试了包括粒子群优化(PSO)结合的多种模型,如PSO-ELM、PSO-KELM、PSO-SVM 和 PSO-LSSVM 以及LSTM。他们发现,LSTM和PSO-ELM在单次预测中表现优异,而PSO-KELM和PSO-LSSVM在整体准确率方面更具优势。
尽管目前已有大量研究提出了适用于三峡库区滑坡的预测方法,但在不同地理、地质和水文条件下使用机器学习进行滑坡位移预测的研究仍相对较少。例如,Krkač 等(2017)基于克罗地亚最大的滑坡,提出了一种基于随机森林的新方法,结合历史滑坡、降雨和地下水数据预测滑坡速度。该模型利用历史降雨数据预测每日地下水位,并进一步建模滑坡速度。
最后,Zhu 等(2017)在中国四川省一个受降雨影响的缓慢滑坡中,对两种LSSVM模型配置的预测性能进行了比较与评估。
综上所述,虽然关于三峡水库滑坡的机器学习预测研究成果丰富,但针对位于其他地区的滑坡的研究仍属稀缺。而实际上,全球范围内大量滑坡并不位于水库环境中,许多关键的缓动滑坡更容易受到降雨事件的影响。
此外,现有研究大多仅将一种深度学习模型(通常为LSTM)与传统机器学习算法进行性能比较。然而,有许多DL模型已在时间序列预测任务中取得了成功。
本文工作
本研究正是为了填补这些空白,通过评估、比较和分析七种最先进的DL算法在四个地理位置、影响因素、地质背景、时间步长和测量仪器各不相同的滑坡案例中的预测性能。
2. 案例研究与数据资料
Sant’Andrea 和 Lamosano 滑坡均位于多洛米蒂山脉(Dolomites),该地区属意大利东北部威尼托大区贝卢诺省(Belluno),分别位于 Perarolo di Cadore 和 Chies D’Alpago 市镇。Baishuihe 滑坡位于中国中部湖北省三峡库区内。而 El Arrecife 滑坡位于西班牙南部格拉纳达省 Rules 水库的西侧边坡(见图1)。
2.1 Sant’Andrea 滑坡
Sant’Andrea 滑坡位于 Perarolo 村上游区域,影响着山谷左侧、俯瞰 Boite 河流域的边坡(见图2)。该滑坡对当地居民构成重大风险,因为一旦不稳定土体崩塌,可能会在 Boite 河上形成临时堵塞,从而引发下游地区洪水。当地的最高温度为 15°C,最低温度为 -7°C。
多年来,研究人员对滑坡区的地质特征开展了多次实地调查,以获取空间分布信息。特别是岩性单元的分布情况,通过现场踏勘与地质和岩土调查结果相结合得出(Brezzi 等,2021)。Sant’Andrea 滑坡由厚约30米的黏土-石灰岩堆积体构成,土体物质异质,粒径和岩土工程性质各异。滑坡体沿基岩风化带滑动,该基岩主要由白云岩构成,并含有褶皱状的硬石膏与石膏层。
滑坡活动表现为缓慢位移与加速阶段交替变化,这一过程主要由持续且强烈的降雨事件触发。滑坡体的复杂水文地质特征得以揭示,得益于对地质单元分布的详细掌握,这有助于进一步解释滑坡行为。
研究发现该不稳定体内存在两个水循环系统(Brezzi 等,2021):浅层地下水在堆积体的上部流动,而深层水则流经主要由风化和破碎石膏构成的基岩上部。然而,水的作用被认为是边坡不稳定的主要诱因:一方面,降雨时的水循环会导致位移加速;另一方面,来自坡顶的深层水循环即便在干燥期也会引起缓慢位移。
这种动态变化与水与石膏之间的物理和化学作用密切相关,尤其是在基岩上部和地表堆积层中,水的作用会影响岩体的力学性质。水合作用使弱石膏岩呈现出塑性流变特征,进而驱动整个不稳定体的蠕变行为以及边坡大范围失稳。同时,溶蚀作用会增加岩体孔隙数量,促使基岩及其风化石膏中形成毫米至厘米级的微裂隙网络和喀斯特空洞。这使得滑坡区的水循环进一步复杂化,使得石膏岩地层的力学行为难以预测,最终可能导致滑坡体突然崩塌的危险。
自2013年底以来,该滑坡一直通过拓扑测量系统进行监测。监测系统由一台机器人全站仪(RTS)和若干安装在不稳定斜坡上的反射靶组成(见图2)。随着滑坡的发展,多个区域的稳定性状况不断恶化,因此逐步安装了 RTS 靶点。本研究选取了 P4 靶点进行分析,该点位于位移显著区域,并拥有长达四年的位移时间序列。图3展示了该靶点在2014年至2019年间记录的每日差分位移。研究发现,位移速率的增加与降雨事件密切相关,如前所述,降雨持续时间也会影响滑坡活动。
原始数据的时间步长为 1 小时。然而,我们选择将其重采样为日尺度,这一做法具有多种优势:可降低噪声、平滑短期波动、提升数据处理效率,同时提供更宏观的数据模式概览。最后,由于本研究的预测范围等于一个时间步长,日预测相比小时预测在决策和规划中更具实际意义,而小时级预测更易受到短时波动干扰,实用性较低。
2.2 Lamosano 滑坡
Lamosano 滑坡位于 Chies D’Alpago 市镇的 Lamosano 村(见图4)。该边坡不稳定性区域内曾建有多栋建筑,近年来这些建筑受到不同程度的结构性破坏。该地区最高温度为 20°C,最低温度为 -1°C。
Lamosano 滑坡被分类为缓慢移动的旋转型滑坡,其体积估算约为 4.5 × 10⁶ 立方米,当前主要向西南偏西(WSW)方向移动(Teza 等,2008)。虽然对该滑坡的全面地质特征尚未完成描述,但滑动体所涉及的主要岩性包括:页状黏土泥灰岩(基岩上层)、灰色砂岩(基岩下层)以及沙质砾石的碎屑覆盖层(Pieraccini 等,2006)。
类似于 Sant’Andrea 滑坡,该滑坡也呈现出缓慢位移与加速阶段交替的特征,其主要诱因是持续且强烈的降雨。如图5所示,这些强降雨高峰与使用 InSAR 遥感技术检测到的水平位移分量的变化密切相关。
本研究使用 C 波段 Sentinel-1 的水平位移分量对该滑坡进行了监测,时间范围为 2015年3月30日至2020年2月8日。时间序列数据是通过 Small Baseline Subset(SBAS)算法(Berardino 等,2002)在 Sarscape 软件中处理 229 张上升轨影像和 249 张下降轨影像后提取的。
我们重点分析了水平位移分量,因为它最明显地反映了与降雨事件相关的“阶跃式”滑动行为,且对该区域内的风险要素影响最大。时间序列的时间步长为 11天,这是使用上述 InSAR 处理方法所能获得的最小时间间隔。
2.3 白水河滑坡(Baishuihe Landslide)
白水河滑坡位于三峡库区的长江河谷右岸。图6展示了该滑坡的主要地形特征。滑坡边界的最高点海拔为 297 米,其后缘裂缝构成了滑坡后部相对稳定区域的天然边界(Song 等,2020)。前缘沉入水中,海拔约为 120 至 130 米,始终低于三峡水库水位约 145 米。
该滑坡南北长约 500 米,东西宽约 430 米,总面积约为 215,000 平方米,平均滑体厚度约为 30 米,主滑动坡度为 20°,滑坡体积估算为 645 万立方米(Li 等,2010)。
滑体主要由粉质粘土与砾质土交替分布组成,厚度在 7.5 至 37.7 米之间。滑动面主要由含砾或含角砾的粉质粘土组成,有些区域几乎完全由角砾和粘土构成。破坏带厚度在 0.2 至 1.3 米之间,平均为 0.7 米(Yang 等,2019)。
该地区属于亚热带季风气候带,具有降水量大、四季分明的气候特征。最高气温达 42°C,最低为 -8.9°C,年平均气温在 17~19°C 之间(Song 等,2020)。每年 6 至 9 月为汛期,10 月至次年 5 月为非汛期。
在汛期期间,若出现持续且强烈的降雨,滑坡会发生显著变形。因此,降水被视为诱发滑坡变形的主要因素之一。
此外,三峡水库水位每年周期性波动:
- 11月至12月:水位维持在约 175 米;
- 1月至5月:水位逐步下降至约 145 米,这一期间白水河滑坡的变形加剧;
- 6月至7月:水位处于低位,维持在约 145 米附近轻微波动;
- 8月下旬至10月:水位再次上升,同时滑坡变形速率减缓。
因此,水位波动是研究白水河滑坡活动不可或缺的因素(Keqiang 等,2008;Li 等,2010;Miao 等,2021)。
从 2003年6月起,该滑坡由 六个手动GNSS监测站进行监控,站点名称分别为 XD-01、XD-02、XD-03、XD-04、ZG93 和 ZG118(Li 等,2008)(见图6)。这些监测点覆盖了滑坡位移的关键区域,其中中部与后部区域最为不稳定(Li 等,2010)。
在本研究中选用 ZG118 站点,因其数据完整、记录时间最长且变形显著(见图6与图7)。该站的时间序列步长为 1个月,是当前可获得的最大时间分辨率。
2.4 El Arrecife 滑坡
El Arrecife 滑坡影响着直接俯瞰 Rules 水库的斜坡。该滑坡最近由 Reyes-Carmona 等人(2020,2021)识别并加以特征描述。它被归类为滑动面倾角为21°、方向为 N120°E 的平移型滑坡,滑动方向与坡面平均方向平行。同时,该滑坡的下部还受到多个小规模的旋转滑坡影响。
该滑坡占地面积为 473,107 平方米,平均厚度为 31.1 米,体积达 1,470 万立方米,属于特大型滑坡(见图8)。其最显著的特征是:缺乏明显的滑坡地貌特征(例如明显的主裂壁或侧缘裂缝),因此在自然地貌中难以辨识。
此外,地质因素(如岩性和构造)也促成了该滑坡的形成。滑坡区岩性为片岩(一种具有面状构造、粗颗粒、摩擦角低的变质岩),这使得该区域具有高滑坡潜势。
由于滑坡靠近水库,其存在不仅威胁水库本身,还威胁附近基础设施(如高速公路、高架桥、电力线路)以及当地居民安全。由于其为平移型滑坡,不能排除整体滑坡体发生临界加速并造成灾难性破坏的可能性。如果滑坡引发水波冲击并导致水坝溃决,进而引发下游山洪暴发,后果将极为严重。
尽管如此,目前更可能造成破坏的是底部的多个小型旋转滑坡,它们可能对穿越滑坡区域的基础设施(如 N-323 国道)带来更直接的威胁。
该滑坡的活动呈现出线性位移趋势,不稳定区下部偶尔出现小幅加速,这些加速与 Rules 水库水位的下降有关。特别是从 2017年到2019年,两次水位下降期均观察到轻微加速。而当水位保持不变或上升时,滑坡活动则趋于稳定甚至停止加速。
与此相对,降雨似乎并未引起滑坡加速,反而通过增加库水水位在一定程度上起到了稳定斜坡的作用。因此,滑坡的主要触发因素是水库水位的变化,其影响显著大于降雨。
-
初始 InSAR 监测时间段:2015年3月 – 2018年9月(Reyes-Carmona 等,2020)
- 该期间内,平均地表位移速率为 25 mm/年,最大位移速率为 55 mm/年
- 累积位移为 10 cm(约 3.5 年)
-
后续扩展监测期:2014年12月 – 2020年3月(Reyes-Carmona 等,2021)
- 平均位移速率约为 20 mm/年
- 图9展示了 2016年10月至2020年3月 的监测图像,明确反映滑坡位移与水位变化的相关性
-
地面穿透雷达(GPR)调查:1997年–2020年
- 揭示滑坡在过去 22 年中持续活跃
- 垂直地表沉降速率估计为 23 mm/年
-
数据处理与技术细节:
- 卫星:C波段 Sentinel-1B
- 时间段:2015年9月30日 – 2020年3月13日
- 采用 P-SBAS 算法(Casu 等,2014),在 ESA 地质灾害平台(GEP) 中处理 101 张上升轨影像
- 时间序列步长:12天(这是该滑坡 InSAR 监测中可用的最高时间分辨率)
2.5 🌍 四处滑坡对比分析表
滑坡名称 | 地理位置 | 滑坡类型 | 体积估算 | 触发因素 | 监测方式与时长 | 时间分辨率 | 主要特征与风险 |
---|---|---|---|---|---|---|---|
Sant’Andrea | 意大利 Perarolo 村,Dolomites 地区 | 缓慢滑移型(与膏盐层、水交互密切) | 未明确量化(30m厚混合滑体) | 强降雨 + 地下水循环 | RTS光学监测系统(2013–2019),反射靶标P4 | 每日 | 存在深层与浅层双重地下水系统;石膏溶蚀、塑性变形导致不可预测行为,滑体可能突然坍塌造成河道堵塞与下游洪水 |
Lamosano | 意大利 Chies D’Alpago 村 | 旋转型慢速滑坡 | ~4.5 × 10⁶ m³ | 强降雨 | Sentinel-1 InSAR,2015–2020,SBAS | 11天 | 位移主要出现在水平方向,对居民建筑有威胁,响应降雨有明确“阶梯”特征 |
Baishuihe | 中国三峡库区,长江右岸 | 滑移型滑坡,滑面含碎屑与黏土 | ~6.45 × 10⁶ m³ | 强降雨 + 水库水位变化 | GNSS六站点监测(2003至今) | 1个月 | 滑体中后部位移最大,水位下降或暴雨期变形剧烈,水文过程是关键触发因子 |
El Arrecife | 西班牙 Rules 水库西坡 | 平移滑坡(底部含小型旋转滑坡) | ~14.7 × 10⁶ m³ | 水库水位下降(非降雨) | Sentinel-1B InSAR,2015–2020,P-SBAS处理 + GPR (1997–2020) | 12天 | 岩性为低摩擦角的片岩;无典型滑坡形貌,稳定时速位移,存在坝体毁损与次生滑坡风险 |
3. 方法
3.1 数据预处理
在利用机器学习进行水库滑坡位移预测的研究中,累计滑坡位移通常被分解为趋势项和周期项(Du 等,2013;Zhou 等,2018b;Yang 等,2019)。其中,趋势项位移代表滑坡演化的长期发展趋势,而周期项位移则代表由于周期性诱因(如降雨、水位波动)引起的位移变化。两个部分(趋势位移和周期位移)分别进行预测,最终的累计位移预测结果通过合并这两个预测结果获得。
然而,这种方法建立在一个假设之上,即趋势项仅依赖于自身,不受任何外部诱因影响。实际上,这一假设是否成立取决于所采用的分解策略,因此在某些情况下可能并不成立。此外,通过对时间序列进行差分处理,可以去除水平波动、减少趋势和季节性效应,从而稳定时间序列的均值。因此,差分处理有助于提高数据驱动模型的预测能力(Montesino Pouzols 和 Lendasse,2010)。
基于上述原因,本文对滑坡位移和水库水位时间序列都采用了差分处理去趋势化。具体而言,当前时刻的值由当前观测值与前一时刻观测值之差计算而得(除了时间序列的第一个时刻除外)。通过避免复杂的分解过程,并采用简单有效的差分方法去除趋势项,本研究旨在减少由分解策略带来的不确定性和复杂性,从而提高滑坡位移时间序列预测的准确性。
3.2 深度学习算法
本文对七种先进的深度学习架构进行了时间序列预测方面的评估与比较。其中,MLP、LSTM、GRU 和一维卷积神经网络(1D CNN)已广泛应用于多个预测任务。然而,据作者所知,虽然1D CNN在许多时间序列预测任务中已较为常见(Kiranyaz 等,2021),但该模型尚未应用于滑坡位移预测。因此,本文也对该方法进行了评估。
此外,本文还引入了已在滑坡预测中使用的双向 LSTM 模型(Lin 等,2022)。同时,也探索了模型组合结构。例如,2xLSTM 模型即由两层 LSTM 组成的堆叠结构,预计其在处理复杂问题时能优于单层 LSTM。此外,还提出了一种卷积-长短期记忆网络(Conv-LSTM)模型,该模型在多个时间序列预测任务中表现优异。更多关于这些模型的技术细节可参见附录材料。
多层感知机(MLP)(见图 S1)
人工神经网络(ANN)模型是最常被广泛应用于包括时间序列建模与预测在内的多种任务中的模型之一。其优势在于可以在不对模型结构施加严格约束的前提下,对数据的内在规律进行外推。此外,ANN 作为通用逼近器,能够精确逼近各类复杂函数。
在已有文献中,ANN 拥有多种不同的架构形式。虽然基本结构类似,但各类算法的主要差异在于网络结构的设计方式。多层感知机(MLP)是一种三层前馈神经网络(包括输入层、隐藏层和输出层),是目前时间序列预测中最为常用的 ANN 架构之一(Khashei 和 Hajirahimi,2019)。
循环神经网络(RNNs)
本文采用了三种循环神经网络:长短期记忆网络(LSTM)、门控循环单元(GRU)以及双向 LSTM。
传统神经网络是输入层—隐含层—输出层的全连接结构,序列中各位置之间没有信息传递,因此无法直接用于时间序列预测(Chen 和 Chou,2012)。而循环神经网络(RNN)则引入了网络中的反馈连接机制(Sak 等,2014),能够保留前一时间的信息并用于当前的输出计算。
LSTM(见图 S2):LSTM 是 RNN 的一种特殊形式,能够有效缓解“梯度爆炸”问题(Hochreiter 和 Schmidhuber,1997)。LSTM 结构中包含遗忘门、输入门和输出门,这些门控机制确保信息的有效选择与长期记忆的保持。三大门控机制共同构建了一个稳定的非线性信息控制系统。在前向传播完成后,采用时间反向传播算法(BPTT)将累计误差向后传播,计算各参数的误差梯度,最终通过随机梯度下降法更新权重与阈值。本文评估了两种架构:单层 LSTM 与双层 LSTM(2xLSTM)。
双向 LSTM(见图 S4):虽然 LSTM 已缓解了 RNN 的梯度消失问题,但其只能学习过去的数据,无法利用未来的信息。而在滑坡位移预测中,滑坡运动不仅受到过去信息的影响,未来的趋势也可能对模型训练有所帮助。双向 LSTM 架构中包含前向和后向两个 LSTM 层,其中后向 LSTM 通过反向处理序列来提取未来信息,而前向 LSTM 负责提取过去信息。该结构已成功应用于多种预测任务,如太阳辐射(Peng 等,2021)、测井曲线(Shan 等,2021)和旅游需求预测(Kulshrestha 等,2020)。
GRU(见图 S3):GRU 是 RNN 的一种变体,其结构更加简洁,性能更优(Cho 等,2014;Zhao 等,2018)。与 LSTM 类似,GRU 拥有遗忘门,但省略了输出门,因此参数更少。在某些任务中(如音频建模、语音信号建模和自然语言处理),GRU 的性能优于 LSTM(Ravanelli 等,2018)。
1D 卷积神经网络(Conv)(见图 S5)
卷积神经网络(CNN)是人工神经网络(ANN)的一个子集,广泛应用于图像与视频识别、图像分类和自然语言处理等领域。CNN 使用与数据形状相似的滤波器,且滤波器的形状与数据的形状有关。由于时间序列(Gamboa,2017)是单维数据,1D 卷积神经网络(Amarasinghe 等,2017;Kiranyaz 等,2021)被用于滑坡位移预测任务。在 Conv1D 层中,输出序列的长度通常比输入序列短。为了弥补这一点,会在输入序列的两端添加零,这种处理方式也称为“同形填充”。在 Conv1D 层中,滤波器会在输入序列上滑动,一次滑动一个步长。本文是首次将基于 1D 卷积的架构用于滑坡位移预测。
Conv-LSTM 模型(见图 S6)
本文使用的 Conv-LSTM 模型由一层 1D 卷积层、两层 LSTM 层和一层全连接层组成。在该模型中,输入数据的特征提取通过 CNN 层完成,然后将提取的特征数据传递到 LSTM 和全连接层,最终预测滑坡位移。CNN 和 LSTM 的组合在多个预测任务中实现了最高的预测精度(Xue 等,2019;Lu 等,2020;Livieris 等,2020)。然而,这是首次将 Conv-LSTM 架构应用于滑坡位移预测任务。
3.3 训练策略与优化
当前和过去的滑坡位移信息及其触发因素可能通过非线性关系影响未来的位移。在本研究中,我们使用七种深度学习模型,通过显示过去 n 个时间步的位移和触发变量来预测未来单一的位移时间步。对所有上述模型进行了不同回溯窗口(3、5、7、9、12)的评估,以便为每个研究案例定义最佳窗口。该方法的可视化方案见图 10。
数据拆分和训练过程
位移时间序列分为80%用于训练,20%用于测试。训练集的20%用于在训练过程中监控模型性能,并创建检查点(保存模型权重),对应较低的验证损失。数据集的划分是按时间顺序进行的,即训练集包含最早的数据,接着是验证集,最后是测试集。所有数据集进一步被分割成小的时间序列块,每个块的长度等于回溯值加上预测步骤的真实值。例如,如果回溯值设置为3,则每个块的长度为四个时间步。
Huber损失被用作损失函数(Holland和Welsch,1977;Huang和Wu,2021)。Huber损失结合并优化了均方误差(MSE)和平均绝对误差(MAE),其定义如下:
L δ ( y , f ( x ) ) = { 1 2 ( y − f ( x ) ) 2 如果 ∣ y − f ( x ) ∣ ≤ δ , δ ∣ y − f ( x ) ∣ − 1 2 δ 2 否则 . L_{\delta} (y, f(x)) = \begin{cases} \frac{1}{2} (y - f(x))^2 & \text{如果 } |y - f(x)| \leq \delta, \\ \delta |y - f(x)| - \frac{1}{2} \delta^2 & \text{否则}. \end{cases} Lδ(y,f(x))={21(y−f(x))2δ∣y−f(x)∣−21δ2如果 ∣y−f(x)∣≤δ,否则.
其中 δ = 1 \delta = 1 δ=1。因此,对于大于 δ \delta δ的损失值,使用MAE,而对于较小的损失值,使用MSE。通过使用MAE来减小异常值的影响,这样可以得到一个更加稳健的模型。同时,通过在较小的损失值上使用MSE,保持了接近中心的二次函数。
训练的epoch数量设置为1000,为了减少调参时间,使用了早期停止策略,当验证损失在20个连续的epoch中没有减少时停止训练。对于每个架构,权重会在对应于最低验证损失值的epoch中自动保存。
此外,在训练深度学习模型时,必须使用适当的超参数组合来优化模型并获得最佳结果。因此,我们通过多种批量大小(9, 18, 36, 74, 144)、学习率(10e-3, 5e-3, 10e-4, 5e-4, 10e-5, 5e-5)和层节点数(8, 16, 32, 64, 128, 256)的组合来迭代训练模型。因此,对于每个架构,我们针对每个回溯值训练180种不同的超参数组合,总共有900种组合。该过程是使用Python编程语言构建的。所有实验均在Windows操作系统的计算机上执行,配置为3代Ryzen Threadripper 3990X CPU和NVIDIA RTX 3090 GPU,具有10,496个CUDA核心。
3.4 模型评估
训练完成后,预测模型必须在未见过的测试数据集上进行评估。预测性能通过以下指标进行估计:
- 均方根误差(RMSE):
RMSE = 1 N ∑ i = 1 N ( P i − M i ) 2 \text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (P_i - M_i)^2} RMSE=N1i=1∑N(Pi−Mi)2
- 归一化均方根误差(NRMSE):
(公式未在原文中提供,但通常这是RMSE除以观测值的范围或标准差。)
- 决定系数( R 2 R^2 R2):
R 2 = ( ∑ i = 1 N ( M i − M ) ( P i − P ) ) 2 ( ∑ i = 1 N ( M i − M ) 2 ) ( ∑ i = 1 N ( P i − P ) 2 ) R^2 = \frac{\left( \sum_{i=1}^{N} (M_i - M)(P_i - P) \right)^2}{\left( \sum_{i=1}^{N} (M_i - M)^2 \right) \left( \sum_{i=1}^{N} (P_i - P)^2 \right)} R2=(∑i=1N(Mi−M)2)(∑i=1N(Pi−P)2)(∑i=1N(Mi−M)(Pi−P))2
其中, P P P和 M M M分别表示预测的位移和实际位移。 M M M是观测值的均值, P P P是预测位移的均值。样本的数量由 N N N表示。 R 2 R^2 R2统计量评估观测值与预测值之间的相关性,而RMSE显示实际值与预测值之间的差异。一个有效的模型应该具有低的RMSE值和高的 R 2 R^2 R2值。
4. 滑坡位移预测
4.1 人工水库环境外的滑坡
正如前文所述,关于在非水库环境下应用机器学习(ML)方法进行滑坡位移预测的研究相对较少。在这一部分,我们展示了两个由降雨引发的缓慢滑坡的预测结果。在这些情况下,影响滑坡位移的主要因素是地下水位,而地下水位又受到降雨的影响。由于这两个案例中没有地下水位时间序列数据,因此仅使用降雨作为触发因素。
4.1.1 圣安德烈亚滑坡
在圣安德烈亚滑坡中,前面所述的复杂水文地质环境使得直接将日降雨量与日位移相关联变得困难。滑坡体的行为受到浅层和岩溶深层地下水循环系统的强烈控制。因此,相同的降雨事件可能会通过演变为两个稍微时间上偏移的地下水流,延长滑坡加速过程。由于没有地下水位的时间序列数据,因此无法描绘降雨和地下水位升高之间的确切时间偏移。因此,我们决定将多个累积降雨量提供给模型,范围从日累积到7天累积。在这种情况下,使用灰色关联分析(Kuo等,2008;Kayacan等,2010)来研究累积值与滑坡差分位移之间的相关性。这里应用灰色关联系数来研究累积值之间的相关性。由于该系数在七个累积值之间没有显示出一致的相关性变化,我们决定将所有的降雨累积量与滑坡差分位移一起作为模型输入。此外,逐步评估降雨累积量显示,增加或减少累积数量都未能提高模型的性能。因此,历史差分位移和八个不同的降雨累积量(1至7天)被用来预测未来24小时的滑坡位移(单位:毫米)。
我们在2014年2月9日至2018年2月15日的4年数据上训练模型,共1468个时间步。选择一整年作为测试集,从2018年2月16日到2019年2月15日,共365个时间步。最佳结果由MLP、LSTM和GRU模型获得,而最差结果则由1D CNN模型获得(见表1)。图11展示了在测试集的最高峰值处,三种最佳模型的预测结果。MLP、LSTM和GRU能够准确预测位移的峰值和增加的开始时间。而对于其他模型,预测并不准确。尽管LSTM和GRU显著低估了峰值,MLP的预测最接近实际峰值。图12和图13展示了两种情况,其中加速过程较之前的案例更温和,既在加速梯度上,也在幅度上有所不同。从这些例子可以清楚看出,LSTM和GRU能够准确预测所有加速和峰值。相反,在这种情况下,MLP无法预测峰值。
4.1.2 Lamosano 滑坡
历史的水平差分位移和降雨被用来预测滑坡位移(毫米),预测未来11天的位移。所有使用的变量时间序列的时间步长为11天。我们在近5年的数据上训练模型,数据从2015年4月10日到2020年2月3日,总共161个时间步。选择近2年作为测试集,从2018年4月14日到2020年2月3日,共61个时间步。在这一研究案例中,除了Conv和Conv-LSTM模型外,所有模型都取得了具有竞争力的结果。最佳的评估指标由MLP、GRU和Bi-LSTM模型(分别使用3、7和9作为look back)获得,而最差的结果来自Conv-LSTM和1D CNN模型(见表2)。然而,LSTM和2xLSTM的评估分数接近最佳三种模型的分数。然而,我们可以注意到最佳三种模型之间有显著不同的预测行为。例如,在第一个位移峰值(图14)中,MLP模型能够完美预测位移峰值和加速开始的时间。另一方面,GRU和Bi-LSTM仅预测了加速的开始,而它们提前/低估了位移峰值。然而,在第二和第三个位移峰值(图15)中,所有三种模型都大幅低估了位移,但它们再次正确预测了加速的开始。
4.2 人工水库中的滑坡
许多研究表明,水库滑坡的位移主要受水库水位变化、降雨及其前期位移的影响(Huang et al., 2017; Zhou et al., 2018b; Wang et al., 2019, 2020; Reyes-Carmona et al., 2021)。因此,降雨、前期位移和水库水位差异被包括在多变量建模中,用于本研究中调查的两个水库滑坡,即中国的白水河滑坡和西班牙的埃尔阿雷西费滑坡。根据Wang et al.(2022),研究人员已使用多个由降雨和水库水位衍生的变量作为模型输入。然而,大多数研究与建模时考虑的前期时间步长不同。此外,作者们选择候选变量的策略也因研究而异,因此,可能会为相同的案例选择不同的变量。因此,我们决定避免基于统计的选择标准,而选择位移、降雨和水库水位变化作为月度(白水河)或两周(埃尔阿雷西费)信息,这取决于可用的最高位移时间步长分辨率。然后,通过回溯窗口评估前几个月的触发因素。假设回溯窗口最多12个月可以获得可靠预测所需的所有信息,因此不考虑移动累积量。
4.2.1 白水河滑坡
历史的月度差分位移、月度降雨量和月度水库水位变化被用来预测未来1个月的滑坡位移(毫米)。我们在2003年8月31日至2016年8月31日的13年数据上训练模型,共157个时间步。选择整整两年作为测试集,从2016年9月30日到2018年8月31日,共24个时间步。在这种情况下,**Conv-LSTM模型以12个时间步(1年)作为look back,取得了最佳的预测性能,其次是MLP和LSTM,**回溯窗口分别为9和12个时间步。在这种情况下,显然Conv-LSTM远远超过了所有其他模型,取得了8.6毫米的RMSE和0.85的R2,而第二好的模型MLP的RMSE为13.55,R2为0.65。在这种情况下,最佳回溯窗口在所有架构中保持相对稳定,范围为9到12个时间步(表3)。图16显示了最佳三种模型对测试集未见数据(2年)的预测结果。该数据集显示了两个间隔为11个月的峰值。第一个峰值出现在2017年7月,显示出91毫米的月度差分位移,而第二个峰值出现在2018年6月,显示较低的位移,峰值为30毫米。通过观察模型预测,明显看出所有模型都能准确预测加速的开始,除了Conv模型。然而,GRU和Bi-LSTM提前预测并“平滑”了两个峰值的加速开始。所有模型的总体趋势是低估第一个峰值,而高估第二个峰值。然而,Conv-LSTM在此情况下显示出卓越的预测能力,第一个峰值低估了19毫米,第二个峰值仅高估了3.5毫米,而第二好的模型(MLP)则低估第一个峰值29毫米,并高估第二个峰值5毫米。
4.2.2 埃尔阿雷西费滑坡
历史的差分位移、降雨量和水库水位变化(12天时间步长)被用来预测未来12天的滑坡位移(毫米)。我们在2016年11月5日至2019年5月18日的3年数据上训练模型,**共72个时间步。在这种情况下,选择了约1年作为测试集,从2019年5月30日到2020年3月13日,共24个时间步。**在这种情况下,滑坡行为与前面三种情况有很大不同。例如,加速(和减速)较温和,滑坡的整体速度较低。此外,降雨的影响不明确,且难以量化,因为在最强降雨的情况下,水库水位上升,导致滑坡运动减速。在这个研究案例中,所有模型都达到了可接受的RMSE值,GRU、MLP和LSTM取得了最佳成绩(表4)。图17显示了所有模型对未见测试集的预测。可以看到,所有预测非常相似,它们都适应了实际位移。在2019年10月31日附近预测了轻微的加速,而水位接近局部最低点。其余测试系列呈现线性行为,这使得预测相比其他案例更不具挑战性。
5. 讨论
本研究的结果表明,在四个滑坡案例中,没有任何一个模型能够始终如一地表现最佳。然而,MLP、LSTM和GRU在所有场景中普遍表现良好,证明它们能够在不同类型的滑坡和触发因素下提供一致的预测。这些模型表现出较强的通用性,在人工水库滑坡和自然环境滑坡中都能提供竞争性的结果。
相反,Conv模型在所有案例中都表现最差。这表明,在本研究的背景下,仅依赖卷积层进行滑坡位移预测并不有效。同样,Bi-LSTM模型仅在Lamosano滑坡中表现出竞争力,而2xLSTM模型在任何案例中都没有表现出强劲的性能。
尽管Conv-LSTM模型在Baishuihe表现最佳,但在其他研究案例中的表现并不理想。这种差异可以通过Baishuihe滑坡独特的运动学特征来解释,该滑坡的位移具有明显的季节性,可能受到降水和水库水位的共同影响。滑坡位移的周期性特征表明,像Conv-LSTM这样的模型,使用适当的回溯窗口和卷积核大小(例如1年),可能非常适合捕捉这种季节性。因此,当结合CNN和LSTM层时,能够为具有强季节性特征的滑坡位移预测提供一种有价值的新的方法。
5.1 基于深度学习的滑坡位移预测系统的可靠性
结果强调,传统的评估指标如RMSE和R²不足以全面评估滑坡位移预测模型的可靠性。虽然这些指标在比较模型时非常有用,但它们并不能完全反映模型在预测关键事件(如加速开始和最大位移峰值时刻)时的能力。对于滑坡预警系统(EWS),至关重要的是,模型不仅能准确预测加速的时间,还能准确预测位移峰值的时间,即使在稳定或缓慢的位移阶段也能保持准确的预测。
例如,在Sant’Andrea滑坡中,尽管不同模型的R²和RMSE值相似,MLP模型在预测最大位移峰值方面表现最为接近,而GRU和LSTM则低估了该峰值。此外,MLP模型在预测较小加速事件时表现不佳,虽然它在强加速事件中的表现较好。这表明,预测精度是与具体滑坡情况相关的,适用于较大加速的模型可能在较小加速事件中表现不佳,反之亦然。
5.2 基于深度学习的滑坡位移预测模型对滑坡预警系统(EWS)的贡献
滑坡早期预警系统(EWS)极度依赖模型的预测能力。目前,许多慢速滑坡的早期预警方法主要依赖于临界降水阈值作为触发因素。这种方法简单、可靠,易于应用,但往往缺乏预测位移幅度或精确的位移峰值时刻。
相比之下,基于深度学习的预测模型能够提前提供加速开始的时刻和位移峰值的精确时刻。这种方法的优势在于能够基于过去和现在的触发因素进行预测,而不依赖未来的变量。因此,为了充分利用这类方法,可能需要结合两者:降水阈值方法基于预测降水发出预警,而基于深度学习的预测模型则根据当前和过去的测量数据预测加速的幅度和时机,从而增强整体预警系统的效果。
总结
- MLP、LSTM和GRU在滑坡位移预测中普遍表现可靠,而Conv模型在所有案例中的表现最差。
- Conv-LSTM在具有明确季节性特征的滑坡(如Baishuihe)中表现良好,但在其他案例中的表现不佳。
- 预测性能可能会根据滑坡类型和加速特征有所不同,RMSE和R²等传统指标未必能够全面反映这一点,尤其是在预测较大和较小的位移事件时。
- 对于滑坡早期预警系统(EWS),结合降水阈值方法和基于深度学习的预测模型可能是最有效的方案,其中降水阈值方法基于降水预报发出预警,而深度学习模型则预测加速幅度和位移时刻。
本研究强调了深度学习在滑坡位移预测中的潜力,但同时也提醒在选择模型时需要充分考虑每个滑坡案例的具体背景。
6. 结论
本研究测试了七种深度学习技术在四个不同滑坡案例中的有效性,考虑了不同的地理位置、影响因素、地质设置、时间步长维度和测量传感器,提供了它们在预测滑坡位移时的表现的见解。研究发现,研究案例对七种技术的表现影响较小。实际上,这些模型没有表现出与滑坡类型或触发因素相关的行为。Conv模型在所有案例中都表现最差。三种模型——MLP、LSTM和GRU,在四个场景中均能产生可靠的预测。此外,在Baishuihe研究案例中,滑坡具有高度季节性,所推荐的Conv-LSTM模型表现优于其他模型。相反,GRU模型在Sant’Andrea和El Arrecife表现良好,但无法准确预测Baishuihe滑坡的位移。MLP、GRU和LSTM在处理滑坡位移预测任务时被推荐使用。
当位移表现出较强的季节性时,必须考虑使用结合了1D CNN和LSTM层(Conv-LSTM)的模型。此外,所有场景中都必须考虑多个回溯窗口的维度。最后,我们建议避免使用1D CNN和双向LSTM。尽管本研究表明,使用深度学习算法进行滑坡位移预测是可靠的,但在将其应用于操作性滑坡早期预警系统(EWS)之前,仍需进行一些改进。例如,支持未来影响因素(如天气预报)可能会提高模型的预测准确性,特别是在时间序列分辨率较低(如月度)的情况下。然而,使用天气预报作为协变量可能会引入进一步的不确定性,因为预测的降水量本身就存在一定的不确定性,必须对此加以评估。其他参数,如响应触发因素的季节性变形、不同气象数据的组合(如降水和温度)或地块的岩性模式,也可以进行评估。
此外,集成建模可以结合不同预测算法的优点,从而使模型输出更准确的预测结果。例如,在Sant’Andrea案例中,将MLP(适用于大位移峰值)和LSTM(适用于小位移峰值)模型进行集成,构建一个能够预测强加速和温和加速的模型会很有意义。
总之,本研究表明,深度学习(DL) 可以成功应用于滑坡早期预警系统(EWS)。然而,研究也强调了没有一种通用的模型或配置是最优的。相反,为了获得最佳效果,应该采用针对特定站点的校准方法。
经费支持
本研究得到了帕多瓦大学的开放获取经费资助,符合CRUI-CARE协议。
作者感谢威尼托大区和威尼托公路公司提供监测数据,并通过**“SUPPORTO SCIENTIFICO PER L’OTTIMIZZAZIONE, IMPLEMENTAZIONE E GESTIONE DEL SISTEMA DI MONITORAGGIO CON AGGIORNAMENTO DELLE SOGLIE DI ALLERTAMENTO DEL FENOMENO FRANOSO DI SANT’ANDREA – PERAROLO DI CADORE (BL)”** 项目部分资助本研究,
还感谢西班牙资助项目 “SARAI, PID2020-116540RB-C21” (由MCIN/AEI/10.13039/501100011033资助)和**“RISKCOAST”** 项目为提供El Arrecife滑坡的InSAR位移数据。
感谢欧洲空间局(ESA) 提供的地质灾害开发平台(GEP) 访问权限,项目ID为63737。
数据可用性
研究中使用的七种深度学习模型的微调所需代码可在以下GitHub仓库访问:Landslide-Displacement-Forecasting-using-seven-Deep-Learning-architectures-and-monitoring-data。
Lorenzo Nava
电子邮件:lorenzo.nava@phd.unipd.it
Silvia Puliero
电子邮件:silvia.puliero@phd.unipd.it
Kushanav Bhuyan
电子邮件:kushanav.bhuyan@phd.unipd.it
Ascanio Rosi
电子邮件:ascanio.rosi@unipd.it
Mario Floris
电子邮件:mario.floris@unipd.it
Sansar Raj Meena
电子邮件:sansarraj.meena@unipd.it
Filippo Catani
电子邮件:filippo.catani@unipd.it
Edoardo Carraro
维也纳大学地理与区域研究系,地貌学系统与风险研究,奥地利维也纳大学街7号,1010
电子邮件:edoardo.carraro@univie.ac.at
Cristina Reyes‐Carmona · Jorge Pedro Galve
西班牙格拉纳达大学地质动力学系,医院大道,邮政编码18010
电子邮件:cristinarc@ugr.es
Jorge Pedro Galve
电子邮件:jpgalve@ugr.es
Oriol Monserrat
西班牙巴塞罗那,Catalonia技术通信中心(CTTC),地理信息学研究单位
电子邮件:omonserrat@cttc.cat