什么是hard negative mining?

本文介绍了如何通过生成正负训练样本进行目标检测器训练的过程,特别是对于“硬负例”(hard negatives)的挖掘方法进行了详细说明。文章解释了如何从误检区域中收集难分类样本,并将其加入训练集来提高分类器的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Let’s say I give you a bunch of images that contain one or more people, and I give you bounding boxes for each one. Your classifier will need both positive training examples (person) and negative training examples (not person).
For each person, you create a positive training example by looking inside that bounding box. But how do you create useful negative examples?
A good way to start is to generate a bunch of random bounding boxes, and for each that doesn’t overlap with any of your positives, keep that new box as a negative.
Ok, so you have positives and negatives, so you train a classifier, and to test it out, you run it on your training images again with a sliding window. But it turns out that your classifier isn’t very good, because it throws a bunch of false positives (people detected where there aren’t actually people).
A hard negative is when you take that falsely detected patch, and explicitly create a negative example out of that patch, and add that negative to your training set. When you retrain your classifier, it should perform better with this extra knowledge, and not make as many false positives.

参考:https://www.reddit.com/r/computervision/comments/2ggc5l/what_is_hard_negative_mining_and_how_is_it/

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值