学术概念的提出
世界主要国家的智能制造发展战略与实践
2012年,美国提出“先进制造业国家战略计划”。
2013年4月,德国政府宣布启动“工业4.0(Industry 4.0)”国家级战略规划。
2014年,日本发布制造业白皮书。
我国为实现制造强国的战略目标,在2015年由国务院发布了《中国制造2025》战略规划,智能制造成为其主攻方向。
什么是智能制造?
智能制造的本质和真谛:利用物联网、大数据、人工智能等先进技术认识制造系统的整体联系并控制和驾驭系统中的不确定性、非结构化和非固定模式问题以达到更高的目标。
更清晰地认识整体联系有助于进一步提升企业的整体效能。
智能制造的内涵:
1.适合于自动化技术所能解决的问题基本上都是确定性的。
2.经典的自动化技术面对的基本都是结构化的问题。
3.传统自动化技术处理的问题均有其固定的模式。
4.传统自动化技术针对的问题相对而言是局部的,很少有企业系统层面的问题。
5.企业里存在大量的不确定性问题。
6.企业中有大量的问题是非结构化的。
7.企业中的很多问题是非固定模式的。
数据处理
大数据的“4V”特征:规模性(Volume)多样性(Variety)高速性(Velocity)
价值密度低(Value)
制造业数据的“3M”特性:多来源(Multi-source)多维度(Multi-dimension)
多噪声(Much Noise)
数据处理是智能制造的关键技术之一,其目的是从大量的、杂乱无章、难以理解的数据中抽取并推导出对于某些特定的人们来说是有价值、有意义的数据。常见的数据处理流程主要包括:数据清洗、数据融合、数据分析以及数据存储。数据处理是为了更好地利用数据。
数据获取与处理在智能制造中的应用
1. 数据引领酷特集团收获高端定制红利
2. 海尔空调噪声大数据智能分析
海尔通过整合平台上的软件及硬件资源,与美林数据共同开发了空调噪声智能检测系统,有效地解决了无法准确、可靠识别异音的痛点。
3. Hirotec利用数据预防意外停机
Hirotec在其工厂车间使用了基于物联网和云的技术通过传感器的部署与数据的采集,实现了设备运行状态的实时监控。并利用机器学习方法帮助预测和预防系统故障。
数字孪生的概念与发展
数字孪生概念的要点:不仅描述物理实体的几何模型,更重要的是物理模型;跨越全生命周期;可反映物理实体的功能、状态、性能、行为等。
现实中关于数字孪生尚存在模糊认识,以下几方面尤其需要引起注意:
【定义】物理生命体:“孕育”过程(即实体的设计开发过程)和服役过程(运行、使用)中的物理实体(如产品或装备)。
数字孪生体:是“物理生命体”在其服役和孕育过程中的数字化模型。
数字孪生(又称为数字双胞胎、 数字化双胞胎等):以数字化方式创建物理实体的虚拟模型,借助数据模拟物理实体在现实环境中的行为,通过虚实交互反馈、数据融合分析、决策迭代优化等手段,为物理实体增加或扩展新的能力。
数字孪生最初概念模型及其术语名词的前身——PLM的概念化理想
数字孪生五维模型:物理实体、虚拟实体、服务、孪生数据、各组成部分间的连接。
数字孪生五维概念模型
数字孪生的发展趋势
1. 拟实化——多物理建模
数字孪生是物理实体在虚拟空间的真实反映,数字孪生在工业领域应用的成功程度取决于数字孪生的逼真程度,即拟实化程度。多物理建模将是提高数字孪生拟实化程度、充分发挥数字孪生作用的重要技术手段。
2. 全生命周期化——从产品设计和服务阶段向产品制造阶段延伸
基于物联网、工业互联网、移动互联等新一代信息与通信技术,实时采集和处理生产现场产生的过程数据,并将这些过程数据与生产线数字孪生进行关联映射和匹配,能够在线实现对产品制造过程的精细化管控;同时结合智能云平台以及动态贝叶斯、神经网络等数据挖掘和机器学习算法,实现对生产线、制造单元、生产进度、物流、质量的实时动态优化与调整。
3. 集成化——与其他技术融合
数字线程技术作为数字孪生的使能技术,用于实现数字孪生全生命周期各阶段模型和关键数据的双向交互,是实现单一产品数据源和产品全生命周期各阶段高效协同的基础。
工业机器人的未来发展趋势:一体化、智能信息化、柔性化、人机/多机协作化、作业范围扩大化……
智能调度的概念及其发展
1. 调度的作用和意义
调度问题的基本描述是“如何把有限的资源在合理的时间内分配给若干个任务,以满足或优化一个或多个目标”。
制造业中的调度 服务业中的调度
2. 经典调度问题简介
1)单机调度问题
单机调度问题可以描述为:一台可以完成所有工件加工的机器,一组相互独立的工件,其中每个工件仅包含一道工序;给定工件的所有信息(例如加工时间、交货期等),求解加工顺序,从而优化一个或多个目标。
2)并行机调度问题
并行机调度模型可以描述为:一组相互独立的工件,每个工件仅包含一道工序,一个包含多台加工设备的并行机组;给定工件的所有信息(例如加工时间、交货期等),需要同时确定工件的加工顺序和机器分配从而优化一个或多个目标。
3)流水车间调度问题
典型流水车间调度问题包括置换流水车间调度问题和混合流水车间调度问题。
4)作业车间调度问题
作业车间调度问题可以描述为:n个工件在m台机器上进行加工,每个工件有特定的加工工艺,每个工件使用机器的顺序及其每道工序所花的时间已知。该调度问题就是如何安排工件在每台机器上工件的加工顺序,使得某种指标最优。
5)开放车间调度问题
开放车间调度问题可以描述为:n个工件在m台机器上加工,每个工件包含m道工序,并且,每个工件的工序处理顺序是任意的。每道工序均有确定的加工时间。该调度问题就是如何安排工件在每台机器上工件的加工顺序和工件的各工序顺序,使得某种指标最优。其中不同工件的工序以及同一工件的工序之间没有先后约束。
3. 智能调度的发展过程
20世纪初,在HenryGantt和其它先驱者的努力下,调度开始在制造业中受到重视。
从20世纪50年代到20世纪70年代,研究主要集中在理论探讨上,求解方法主要是数学规划方法,例如整数规划、分枝定界、动态规划等。
1975年,启发式算法成为研究重点。
20世纪80年代以后,智能调度进入快速发展阶段,新的算法不断涌现,例如,遗传算法、蚁群算法、粒子群优化等。
智能调度的特点(1)多目标性。(2)不确定性。(3)复杂性。
4. 智能调度未来发展趋势
1. 当前面临的问题
为了提高求解结果和方法的通用性,通常会使用数学模型对问题进行求解,但数学模型的求解效率低,且只能对小规模问题进行求解;为了提高问题的求解效率和对大规模问题进行求解,学者们提出用智能优化算法对问题进行求解,但智能算法的求解结果具有一定的不稳定性,同时智能优化算法的通用性较低,需要针对特定的问题设计特定的优化过程。现在又有学者提出将数学模型与智能算法相结合的求解思路,但两者之间如何结合,结合之后怎样求解仍然需要研究和探索。
2. 未来发展趋势
(1)伴随着生产工艺的复杂化、生产任务的大批量化、生产场景的多样化等趋势,对调度问题的研究必将朝着更加贴近生产实际问题的方向发展,例如问题中包含实际生产约束、串\并行的多车间协同调度、动态调度等;
(2)伴随着上下游企业之间的联盟、面向用户的生产模式的发展等,分布式生产调度的研究必然会成为一个重要研究方向;
(3)随着智能车间的发展,车间调度问题与其他生产问题的联系正在逐步加强,这必然会形成一个更加复杂的耦合问题,如车间调度问题与工艺规划问题的结合、车间调度问题与物流运输问题的结合等。
工业互联网平台是工业互联网在智能制造中应用的具体形式。工业互联网平台的基础是数据采集。工业互联网平台的核心是平台。工业互联网平台的关键是应用。
工业互联网技术体系包括4个部分:①全面互联的工业系统信息感知技术;②信息传输技术;③数据分析平台;④工业APP开发技术。
CPS和虚实融合
工业4.0的核心理念就是CPS,即数字空间(也称为赛博空间、虚拟空间)与物理空间的深度融合。CPS的内涵:CPS是赛博空间(cyberspace)中的通信(communication)、计算(computation)和控制(control)与实体系统在所有尺度内的深度融合。CPS的狭义内涵:实体系统里面的物理规律以信息的方式来表达;其广义内涵:对实体系统内变化性、相关性和参考性规律的建模、预测、优化和管理。只有在数字空间(赛博空间)才能真正反映实体的内涵、特质、动态等。
整体联系的关键是数据分析
整体联系的目的是为了发现某些未知的因果关系或规律,从而挖掘新的价值。只有借助数据分析方能使人摆脱认识局限或固有偏见。大数据技术和思想的发展使得跨类型、跨领域的数据分析成为了可能。
智能制造技术精要——十六字箴言:数据驱动,软件定义,虚实融合,整体联系
人机关系将由协作转向共融。
人机共融未来发展趋势
人机共融面对的三大挑战:
(1)智能感知;
(2)安全交互;
(3)数据处理。
人机共融的发展方向:
(1)人机共融日常化;
(2)人机共融自然化;
(3)人机共融无障碍化。