开放词汇检测分割YOLOE从pytorch到caffe

0. 前沿

一直在用YOLO系列进行目标检测、分割和关键点检测等任务,基于对YOLO-world的了解,进一步认识了开放词汇检测,简单来说就是在原有固定类别的检测器上进行类别数量提升,基于CLIP的文本embedding能力,可以将任意标签转换为512维度的特征向量,将其与图片目标特征进行对比学习,获得目标的匹配类别。YOLOE在检测的基础上补充了分割任务,能够直接实现实例分割的移植和部署;

在这里插入图片描述
从最后的部署应用来看,在考虑到边缘端的推理效率,采用了重参化移植,export时指定label后,模型的结构和原来的YOLOv8s是一样的,所以总体感觉开放词汇在边缘端还是趋向于闭集检测,优势在于能够进行预标注,对提高新样本的标注效率有一定的帮助。(基于当前认知的感受,后续补充)。本文将针对YOLOE从0到1进行模型的移植部署,整体属于入门级别,没有进行模型微调(微调后会对参与训练的样本精度提升,但其他样本骤降),只对预训练模型进行caffemodel的转换并部

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangxiaobei2017

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值