Stress与Strain+Tensor

本文介绍了在材料科学中描述形变的Stress和Strain张量概念。Stress是单位面积上的作用力,而Strain张量用于量化物体微小变形。通过Transform Matrix和矩阵运算,可以更精确地理解材料的应力和应变状态,为模拟形变提供理论基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当材料发生形变时,内部会产生复原力,如何在数学上描述这种状况是一个有用的话题。

 

 

Stress

 

在胡克定律中使用了Stress概念,现在对Stress的定义进一步解释。Stress为单位面积上承受的作用力,它的单位与压强一样是帕斯卡。

 

相应的力可以通过对Stress在面积S上积分得到。

 

在三维空间中,物体的内部任意切一个小方块,就有三组互相垂直的面,每个面上分别有三个互相垂直的应力:Sigma_11, Sigma_12, Sigma_13, Sigma_21, Sigma_22, Sigma_23, Sigma_31, Sigma_32, Sigma_33。其中Sigma_11, Sigma_22和Sigma_33是垂直相应面的。

 

 

Strain Tensor

 

有许多Strain Tensor理论,最接近连续情况的是infinitesimal strain tensor或Cauchy's strain tensor。在这种情况下,物体的变形必须相当于本身来说必须非常小。

 

 

数学模型

 

设A为原始状态的材料,B为变化后的材料。A中有一个位置记为X,m维。B中位置x,n维。已知原有位置X:

 

x = phi (t, X)

phi是X的函数

delta_x = phi(t, X + delta_X) – phi(t, X)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值