感知机

本文介绍了感知机作为神经网络的基础,包括M-P神经元模型、Hebb学习法则以及感知机学习算法。感知机虽然存在解决线性不可分问题的局限性,但多层感知机通过反向传播和梯度下降能解决此类问题。文章还提到了感知机在1957年的实现以及在现代神经网络中的重要地位。
摘要由CSDN通过智能技术生成

《感知机》   

 

背景介绍

神经网络, 深度学习研究的基础。是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术。

人脑中的神经网络是一个非常复杂的组织,成人的大脑中估计有1000亿个神经元。

                         

人工神经网络定义: “神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应”

 

神经元模型

生物神经元:1904年生物学家就已经知晓了神经元的组成结构,

树突用于接收其他神经元发送的化学物质,当神经元电位超过了一个”阈值“, 它就会”兴奋“并通过轴突末梢向其他神经元发送化学物质。

1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神经元模型: M-P 神经元

         

 

在这个神经元模型中, 神经元收到来自n个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值将与神经元的阈值进行比较,然后通过”激活函数“处理以产生神经元的输出。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值