《感知机》
背景介绍
神经网络, 深度学习研究的基础。是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术。
人脑中的神经网络是一个非常复杂的组织,成人的大脑中估计有1000亿个神经元。
人工神经网络定义: “神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应”
神经元模型
生物神经元:1904年生物学家就已经知晓了神经元的组成结构,
树突用于接收其他神经元发送的化学物质,当神经元电位超过了一个”阈值“, 它就会”兴奋“并通过轴突末梢向其他神经元发送化学物质。
1943年,心理学家McCulloch和数学家Pitts参考了生物神经元的结构,发表了抽象的神经元模型: M-P 神经元
在这个神经元模型中, 神经元收到来自n个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值将与神经元的阈值进行比较,然后通过”激活函数“处理以产生神经元的输出。