9_cnn_MNIST

卷积结构

from torchvision import datasets, transforms
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.mp = nn.MaxPool2d(2)
        self.fc = nn.Linear(320, 10)

    def forward(self, x):
        in_size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))
        x = F.relu(self.mp(self.conv2(x)))
        x = x.view(in_size, -1)  # flatten the tensor
        x = self.fc(x)
        return F.log_softmax(x, dim=1)


class Run(object):
    def __init__(self):
        super(Run, self).__init__()

    def train(self, epoch):
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = Variable(data), Variable(target)
            optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
            optimizer.zero_grad()
            output = model(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            optimizer.step()
            if batch_idx % 10 == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                           100. * batch_idx / len(train_loader), loss.item()))

    def test(self):
        model.eval()
        test_loss = 0
        correct = 0
        for data, target in test_loader:
            data, target = Variable(data), Variable(target)
            output = model(data)
            # sum up batch loss
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            # get the index of the max log-probability
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).cpu().sum()

        test_loss /= len(test_loader.dataset)
        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))

    def run(self):
        for epoch in range(1, 10):
            self.train(epoch)
            self.test()


if __name__ == "__main__":
    print("Life is short, You need Python!")
    batch_size = 64
    train_dataset = datasets.MNIST('.//data//', train=True, download=True, transform=transforms.ToTensor())
    test_dataset = datasets.MNIST('.//data//', train=False, transform=transforms.ToTensor())
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset, shuffle=True, batch_size=batch_size)
    test_loader = torch.utils.data.DataLoader(dataset=test_dataset, shuffle=False, batch_size=batch_size)

    model = Net()
    r = Run()
    r.run()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值