Regression
regression 是通过找到一个函数,这个函数在各个特征的作用下有输出一个值,
这个值我们期望是在最佳函数的情况下输出的值,即误差最小。
实例 (Combat Power)
- 在这里我们有5个自变量
step1:建立模型(model)
首先建立最简单的线性模型即 y = b + w*Xcp
由此我们可以引入多个自变量,即 y = b + ∑WiXi
除此之外我们还可以建立更多的模型


step2:函数好坏(Goodness of function)
计算函数的loss

step3:挑选一个最好的function(best function)
即挑选L(W,b)最小的function
在挑选model的时候,一定要看在training和testing上的Average errror,
因为有的模型在training data上表现的很好,在testing data上表现的很糟糕,
即会出现过拟合现象,所以我们在训练模型的时候,
可以将training data分为training data 和testing data进行训练,
训练好模型之后将原来的testing data带入进去进行一个评分,
这样可以使得模型的准确率跟高,模型更耐用。
本文介绍了回归模型的基本概念,包括如何建立模型、评估模型的好坏以及如何选择最佳模型。文中还提到了过拟合的问题,并建议使用训练集和测试集来提高模型的准确性。
502

被折叠的 条评论
为什么被折叠?



