一、引言
随着制造业数字化转型加速,生产排产优化成为提升企业效率和竞争力的关键环节。大语言模型(LLM)凭借其强大的多模态数据处理、动态优化和智能推理能力,在复杂排产场景中展现出独特优势。谷歌、DeepSeek等机构的研究表明,LLM可通过自然语言交互和生成式决策,突破传统优化算法的局限性。本报告结合半导体行业实践案例与技术路径,系统分析LLM在排产优化中的应用潜力与挑战。
二、LLM在排产优化中的技术原理
-
多模态数据整合
LLM可融合设备日志(文本)、传感器时序数据(数值)、工艺参数(结构化数据)及图像(如晶圆缺陷图),构建统一语义空间,实现跨模态特征关联。例如,通过视觉语言模型(如CogVLM)分析设备状态图像,动态调整检测工序优先级。 -
动态优化机制
基于强化学习(RL)框架,LLM通过多轮迭代生成排产策略:- 自然语言编码:将排产目标(如“最小化设备空闲率”)转化为LLM可理解的指令