LLM制造业最佳实践:基于大语言模型处理最优化问题,制造业如何更优排产,提升资源利用率


一、引言

随着制造业数字化转型加速,生产排产优化成为提升企业效率和竞争力的关键环节。大语言模型(LLM)凭借其强大的多模态数据处理、动态优化和智能推理能力,在复杂排产场景中展现出独特优势。谷歌、DeepSeek等机构的研究表明,LLM可通过自然语言交互和生成式决策,突破传统优化算法的局限性。本报告结合半导体行业实践案例与技术路径,系统分析LLM在排产优化中的应用潜力与挑战。


二、LLM在排产优化中的技术原理

  1. 多模态数据整合
    LLM可融合设备日志(文本)、传感器时序数据(数值)、工艺参数(结构化数据)及图像(如晶圆缺陷图),构建统一语义空间,实现跨模态特征关联。例如,通过视觉语言模型(如CogVLM)分析设备状态图像,动态调整检测工序优先级。

  2. 动态优化机制
    基于强化学习(RL)框架,LLM通过多轮迭代生成排产策略:

    • 自然语言编码:将排产目标(如“最小化设备空闲率”)转化为LLM可理解的指令
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shiter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值