一、引言
预测性维护(Prognostics and Health Management,PHM)通过对设备运行数据的分析,提前预测故障并优化维护计划,广泛应用于各行业,如制造业、能源、交通等。本文将探讨预测性维护的通用方法,助力提升设备管理效率与可靠性。
二、特征工程方法论
(一)关键特征提取方向
- 时域特征 :均值、方差、峰值因子、波形因子等统计量能有效反映设备运行状态稳定性。均值可体现信号平均幅值,方差反映数据波动程度,峰值因子能突出偶尔出现的极大值,波形因子则可综合评估信号波形特性。
- 频域特征 :通过 FFT 将时域信号转换到频域,得到频谱能量分布、主频幅值等特征。设备的旋转部件出现故障,如轴承磨损时,其振动信号在频域中会表现出特定频率成分的能量变化。
- 时序演变特征 :利用滑动窗口计算趋势斜率、移动平均变化率等,能够表征损耗积累过程。随着设备使用时间增加,这些时序演变特征可以捕捉到性能逐渐下降的趋势。
- 设备关联特征 :包括设备在系统中的位置参数、