对于损耗类设备进行预测性维护(Prognostics and Health Management)的最佳实践:流程与算法


一、引言

预测性维护(Prognostics and Health Management,PHM)通过对设备运行数据的分析,提前预测故障并优化维护计划,广泛应用于各行业,如制造业、能源、交通等。本文将探讨预测性维护的通用方法,助力提升设备管理效率与可靠性。


二、特征工程方法论

(一)关键特征提取方向

  1. 时域特征 :均值、方差、峰值因子、波形因子等统计量能有效反映设备运行状态稳定性。均值可体现信号平均幅值,方差反映数据波动程度,峰值因子能突出偶尔出现的极大值,波形因子则可综合评估信号波形特性。
  2. 频域特征 :通过 FFT 将时域信号转换到频域,得到频谱能量分布、主频幅值等特征。设备的旋转部件出现故障,如轴承磨损时,其振动信号在频域中会表现出特定频率成分的能量变化。
  3. 时序演变特征 :利用滑动窗口计算趋势斜率、移动平均变化率等,能够表征损耗积累过程。随着设备使用时间增加,这些时序演变特征可以捕捉到性能逐渐下降的趋势。
  4. 设备关联特征 :包括设备在系统中的位置参数、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shiter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值