论文笔记:《3D Correspondences by Deep Deformation》

本文提出Shape Deformation Networks,通过深度学习方法实现模板驱动的形状对应。网络包括编码器和解码器,编码器将输入形状转化为特征向量,解码器将模板变形为目标形状。训练过程包含监督和无监督损失,优化过程涉及形状重构的优化。实验结果显示,该方法在FAUST、SCAPE和TOSCA数据集上表现优秀,证明了其在3D形状对应问题上的有效性。
摘要由CSDN通过智能技术生成

Introduction:

本文提出了Shape Deformation Networks,来做template-driven形状对应。
这个网络学习 变形模板的形状,并与输入形状做对应。
训练:shape deformation networks(encoder-decoder)
编码网络:将目标形状作为输入,生成全局特征向量
解码网络:模板作为输入,将模板变形为目标形状

Method:

论文方法分为三大块:
(a)network training:
figure1a这个是网络的训练过程。(对应论文中的3.1)
**编码器Eφ:**先输入一个三维点云S,它将输入的每一个3D点都与一个多层感知器相连(MLP隐藏特征大小为64,128,1024),经过一个线性层后,对每一个点得到的特征结果做maxpooling,得到1024维的Eφ (S)特征。
(直观理解,输入一个点云S,利用前向传播将S编码成隐藏代码E,然后利用pointnet将E码弄成特征向量E(S)。)

解码器Dθ:它的输入是上面得到的特征向量和模板A上的一个点P的3D坐标。
这个网络是一个多层感知器,隐藏层大小为1024 , 512 , 256 , 128。后面跟着一个双曲正切。该结构是将模板域的任意点映射到重构表面上,通过对模板进行采样,反复操作,从而输出任意数量的输出点。

在这个过程中,包含了两种损失。
supervised loss
这种情况下,模板A 与 训练形状 S 之间的对应是已知的。qj是训练形状上的点,pi是模板上的点。 pj ↔ qj 。
the reconstruction loss:(1)其中,第一项代表的是重构点,第二项代表的是输入的点。从这个

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值