三维人体重构
文章平均质量分 90
wangyc1208
这个作者很懒,什么都没留下…
展开
-
论文笔记:《FoldingNet:Point Cloud Auto-encoder via Deep Grid Deformation》
introduction:本篇论文,介绍了一个通过深度网格变形的点云自编码器(AE)。提出了新的端到端graph-based编码器和folding-based解码器。实现2D到3D的映射contributions:训练了一个端到端的深度自编码器,来直接作用在无序点云上;提出了一个新的解码操作folding,为重构的点云排序;做实验,可知,相比其他无监督的方法,folding分类的精...原创 2018-10-11 11:45:32 · 8008 阅读 · 18 评论 -
论文笔记:《3D Correspondences by Deep Deformation》
Introduction:本文提出了Shape Deformation Networks,来做template-driven形状对应。这个网络学习 变形模板的形状,并与输入形状做对应。训练:shape deformation networks(encoder-decoder)编码网络:将目标形状作为输入,生成全局特征向量解码网络:模板作为输入,将模板变形为目标形状Method:论文方...原创 2018-10-29 17:21:28 · 1670 阅读 · 1 评论 -
论文笔记:PPF-FoldNet : Unsupervised Learning of Rotation Invariant 3D Local Descriptors
一、目的:这篇论文存在的意义是什么呢?作者在这篇文章里提出了一个网络,是PPF-FoldNet。在这个网络出现之前,作者提出了一个叫PPFNet的网络,这个网络主要是用来得到一个理想的具有鲁棒的3D局部特征子。但是,它有缺点,这个网络对于旋转这个操作来说是很敏感的。也就是说,如果我输入的一个样本是正向的,然后,我把它转了一个角度,按理说,输出的结果与转之前的结果相差不大,但是,现实是有一定差距...原创 2019-03-21 21:38:16 · 3515 阅读 · 2 评论 -
论文学习笔记:《Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network》
网络结构:Encoder:input: 256×256×3 的 imagearchitecture:从卷积层开始,后面跟有10个残差块output:8×8×256 的 feature mapDcoder:input: 8×8×256 的 feature maparchitecture:17个transposed convolution layers(转置卷积块)→kernel si...原创 2019-05-15 23:17:50 · 847 阅读 · 0 评论 -
论文学习笔记:《DenseBody: Directly Regressing Dense 3D Human Pose and Shape From a Single Color Image》
目标:从单张彩色图像直接回归出3D人体的姿态和形状。——————————————————————————————————————亮点:之前的工作都是先根据图像生成中间结果(比如人体分割、2D/3D关节点、轮廓… ),再通过网络得到shape和pose。这篇文章用CNN直接从单张图回归出了3D人体网格。——————————————————————————————————————相关工作...原创 2019-05-16 20:50:25 · 2408 阅读 · 3 评论