山东大学软件学院创新实训<六>

SRS撰写记录
【创新实训项目博客】软件需求规格说明书(SRS)-CSDN博客https://blog.csdn.net/zhengjiuzheDu/article/details/146082090

SRS编写记录


1. 引言部分:明确目标、背景与核心概念

在SRS第一部分,我聚焦于为所有项目相关方建立清晰的背景理解与目标共识:

  • 编写目的:我明确指出SRS不仅作为开发与验证的唯一依据,还需指引后续维护、迭代及质量评估,是控制需求变更与风险的基础文档。因此,需求描述必须权责明晰、验收标准确切,避免后期理解偏差。
  • 项目背景:落脚于行业长期面对的策划流程繁琐、高成本、响应慢、难以创新等痛点。强调AI多智能体通过专家分工、高效协作、链式推理,有望彻底重塑广告行业工作流。特地加入“自动策略生成”“一站式数字方案交付”“数据驱动决策”等落地场景,突出项目的现实意义和先进性。
  • 术语定义:本项目涉及“多智能体”“deepseek”“用户”等专业概念,因此专门撰写定义,区分AI智能体的分工思路(如“市场分析师”“策略规划师”等),清晰界定deepseek大模型在系统中的技术支撑地位,以及用户画像的类型与角色。

这一部分,不仅拓展了读者的话语边界,也为后续的技术与业务细节奠定理解基线。


2. 总体描述:系统流程、用户特性与约束边界

2.1 系统概述

我从端到端用户体验角度描述了整个系统流程:

  • 用户通过表单便捷输入业务需求,包括产品名称、目标受众、预算金额等关键信息。
  • 系统内部模拟现实广告公司专家团队分工,多个AI智能体按既定角色链式协作(如数据工程师、市场分析师、广告规划师等),实现智能推理与决策分工。
  • 核心产出包括三大文档:广告投放建议书(策略、平台选择与ROI分析)、广告内容拍摄建议案(创意稿、视觉脚本与建议)、结构化PPT(便于公司内部项目快速汇报决策)。
  • 系统界面实现沙盘协作可视化,让用户实时观察多智能体间的思考与中间输出,增加方案透明度与信任感。

此部分强调“从委托到交付”的全流程自动化,突出数据驱动和团队协同的价值。

2.2 用户特征

详细界定目标用户:

  • 既面向数字化转型中的大客户市场团队,也覆盖缺乏专业资源的成长型中小企业。
  • 用户通常有市场、广告策划、创意、渠道等相关基础,但缺乏高效分工与数据整合的能力。
  • 系统设计力求操作门槛极低,方便非技术用户通过简单交互获得专家级营销方案。

2.3 约束条件

  • 明确规定前端采用HTML、CSS、JavaScript及Bootstrap框架,以保证响应式体验和跨平台兼容。
  • 后端聚焦Python开发,确保对主流AI API(deepseek、OpenAI等)的高效调用、高扩展性。
  • 数据全部来源需合法合规,严格遵守第三方平台(如AppGrowing)政策。

2.4 需求假设与依赖

  • 项目高度依赖AI大模型与第三方API的可用性与稳定性。
  • 行业数据需定期本地维护,防止因外部变化导致报告失效。

2.5 功能概述

  • 明确系统每一步操作的核心目标与产出,包括用户输入、团队自动协作、三大核心文档生成、协作流程可视化等环节,形成完整业务闭环。

3. 具体需求:细化各功能模块的输入、处理和输出

本节是SRS的主体,为需求落地和开发实现提供详尽蓝图。我将所有需求细分为功能、性能、接口、安全、数据等子模块。

3.1 功能需求

  • 用户需求输入:设计表单页面,收集所有推广任务的关键信息,支持多参数校验,自动生成任务编号,用于后续进度追踪和数据管理。
  • 广告投放建议书自动生成
    • 系统根据任务数据智能推荐适合平台及投放组合,给出投放渠道叠加分析与历史表现参考。
    • 文档结构包括行业分析、竞品调研、平台选择理由、媒体组合与预算分配、ROI预测等,保障策略全面科学。
    • 支持生成后的建议书直接导出为Word或PDF。
  • 广告内容拍摄建议自动生成
    • 基于既定投放策略,AI智能推理拍摄脚本大纲和视觉风格建议,具体到场景、调性和执行要素。
    • 形成结构化内容便于汇报和落地执行。
  • PPT报告自动生成
    • 将项目概况、目标、策略、内容卖点等内容自动分页生成标准PPT,适配主流办公软件下载使用。
  • 多智能体可视化协作流程
    • 所有AI角色按照团队流程分工协作,各流程节点状态可视化呈现。
    • 核心节点如需求分析、策略输出、内容生成、文档编排均组成流程图或进度条展示。
    • 每个智能体角色有独立工单分发、环节确认与前后流程回填机制,支持链式逻辑回退。
  • 数据获取与分析
    • 后台定期同步AppGrowing等权威行业数据库,自动抽取最新市场动态,作为广告投放与内容分析的数据依据。
    • 分析结论直接嵌入建议书与PPT关键板块。
  • 交互与回填模式
    • 用户实时看到每一步文档和建议产出的进展详情,异常或失误时有明确提示与责任环节定位。

3.2 性能需求

  • 所有核心文档(投放书、脚本建议、PPT)须在用户提交后数分钟内自动生产,支撑高频高效运营需求。
  • 后台本地知识库需周期性维护,确保数据鲜活、分析结果与最新行业动态同步。

3.3 外部接口需求

  • 前端界面须适配主流桌面和移动端浏览器,支持表单输入、进度查看和文档导出。
  • 后端须高效对接deepseek、OpenAI等大模型API,保障AI智能体分工和自动报告能力。
  • 对接AppGrowing等行业数据API,实现知识库自动更新。

3.4 数据需求

  • 用户输入结构化存储,便于追溯和二次分析。
  • 行业数据定期导入本地知识库,保证系统脱离API时亦能产出合格报告。
  • 所有AI中间产出与最终文档须存留,支撑可视化与后续分析。

3.5 安全与保密性

  • 所有用户及企业敏感数据采用加密存储,有权限隔离、日志审计和结果导出权限限制。
  • 最终报告、历史建议等只限任务创建人访问,不得外泄。

3.6 软件质量特性

  • 流程设计简明,操作路径直观、可追溯,出现意外可弹窗提示并定位原因。
  • 代码与功能模块做到解耦独立,方便未来角色扩展、新功能加入。
  • 严格适配各操作系统和主流浏览器环境。
  • 支持后续业务拓展(如增加母婴、金融、游戏等不同行业的专属分析模块)。

3.7 其他需求

  • 操作过程全日志留存,便于质控和回溯。
  • 自带用户操作指南、常见问题解答与API接口文档,降低学习与维护成本。

4. 附录与知识资源管理

在SRS结尾,我系统整理了支持本项目的核心知识资料:

  • 参考多智能体协作(如CAMEL框架)、ICLR多阶段开发新模型等顶级学术文献。
  • Deepseek与OpenAI等核心API官方文档,保障研发成员快速查阅。
  • AppGrowing广告市场数据平台数据规则与接口说明。
  • 缩略语与名词表,详尽注解全流程涉及的专业术语,降低知识壁垒。

结语:SRS不是“功能列表”,而是系统工程的知识拼图

本次SRS撰写的实践过程中,我深刻体会到:一份高质量的SRS不仅要清晰细致地描述每一项功能,更需对整体业务流、角色分工、数据支撑及安全、性能等多角度进行系统性思考。只有将概念、流程、接口、验证标准等各环节有机衔接,才能为创新型AI系统的开发与落地提供坚实支撑。

### 山东大学软件学院实训项目与课程安排 #### 1. 实训项目的概述 山东大学软件学院实训项目旨在通过实际操作和项目驱动的方式提升学生的实践能力和综合技能。例如,在暑期实训中,研究生管理系统开发是一个典型的案例[^3]。该项目涉及多个功能模块的设计与实现,其中包括学生组的“我的考试”界面以及教师组的“我的监考”界面。 以下是该系统的部分核心功能展示: ```html <div> <p>课程号:{{course.courseNameId}} {{course.courseName}}</p> <p>开始时间:{{formatDate(course.exmStartTime)}}</p> <p>结束时间:{{formatDate(course.exmOverTime)}}</p> <p>考试地点:{{course.exmPlace}}</p> <p>   考试时间:{{course.exmTime}}</p> <p>考试方式:{{course.teachMethod}}</p> <button type="primary" class="select-button" @click="exm_detail(index)" style="background-color:#18B566">查看考试要求</button> </div> ``` #### 2. 课程安排的具体内容 在第一周的实训过程中,学生可以通过系统查询本学期所选课程的考试安排信息,这些信息通常包括但不限于课序号、考试名称、考试相关的时间安排以及详细的考试介绍[^2]。具体的内容可能如下所示: | 字段 | 描述 | |--------------|--------------------------| | 课序号 | 唯一标识每门课程 | | 考试名称 | 明确考试科目 | | 开始时间 | 考试起始时刻 | | 结束时间 | 考试终止时刻 | | 考试介绍 | 提供考试形式及其他细节 | 这种结构化的数据呈现不仅方便了学生查阅个人考试计划,还帮助教师更好地管理监考任务。 #### 3. 物联网技术的应用前景 除了传统的软件开发类实训外,随着物联网技术的发展,职业教育领域也在积极探索如何将其融入教学实践中。例如,某些实验实训室已经引入了基于物联网的技术平台,用于培养学生的创新思维和技术应用能力[^4]。这表明未来山东大学软件学院可能会进一步拓展此类新兴领域的培训方向。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值