SRS撰写记录
【创新实训项目博客】软件需求规格说明书(SRS)-CSDN博客
https://blog.csdn.net/zhengjiuzheDu/article/details/146082090
SRS编写记录
1. 引言部分:明确目标、背景与核心概念
在SRS第一部分,我聚焦于为所有项目相关方建立清晰的背景理解与目标共识:
- 编写目的:我明确指出SRS不仅作为开发与验证的唯一依据,还需指引后续维护、迭代及质量评估,是控制需求变更与风险的基础文档。因此,需求描述必须权责明晰、验收标准确切,避免后期理解偏差。
- 项目背景:落脚于行业长期面对的策划流程繁琐、高成本、响应慢、难以创新等痛点。强调AI多智能体通过专家分工、高效协作、链式推理,有望彻底重塑广告行业工作流。特地加入“自动策略生成”“一站式数字方案交付”“数据驱动决策”等落地场景,突出项目的现实意义和先进性。
- 术语定义:本项目涉及“多智能体”“deepseek”“用户”等专业概念,因此专门撰写定义,区分AI智能体的分工思路(如“市场分析师”“策略规划师”等),清晰界定deepseek大模型在系统中的技术支撑地位,以及用户画像的类型与角色。
这一部分,不仅拓展了读者的话语边界,也为后续的技术与业务细节奠定理解基线。
2. 总体描述:系统流程、用户特性与约束边界
2.1 系统概述
我从端到端用户体验角度描述了整个系统流程:
- 用户通过表单便捷输入业务需求,包括产品名称、目标受众、预算金额等关键信息。
- 系统内部模拟现实广告公司专家团队分工,多个AI智能体按既定角色链式协作(如数据工程师、市场分析师、广告规划师等),实现智能推理与决策分工。
- 核心产出包括三大文档:广告投放建议书(策略、平台选择与ROI分析)、广告内容拍摄建议案(创意稿、视觉脚本与建议)、结构化PPT(便于公司内部项目快速汇报决策)。
- 系统界面实现沙盘协作可视化,让用户实时观察多智能体间的思考与中间输出,增加方案透明度与信任感。
此部分强调“从委托到交付”的全流程自动化,突出数据驱动和团队协同的价值。
2.2 用户特征
详细界定目标用户:
- 既面向数字化转型中的大客户市场团队,也覆盖缺乏专业资源的成长型中小企业。
- 用户通常有市场、广告策划、创意、渠道等相关基础,但缺乏高效分工与数据整合的能力。
- 系统设计力求操作门槛极低,方便非技术用户通过简单交互获得专家级营销方案。
2.3 约束条件
- 明确规定前端采用HTML、CSS、JavaScript及Bootstrap框架,以保证响应式体验和跨平台兼容。
- 后端聚焦Python开发,确保对主流AI API(deepseek、OpenAI等)的高效调用、高扩展性。
- 数据全部来源需合法合规,严格遵守第三方平台(如AppGrowing)政策。
2.4 需求假设与依赖
- 项目高度依赖AI大模型与第三方API的可用性与稳定性。
- 行业数据需定期本地维护,防止因外部变化导致报告失效。
2.5 功能概述
- 明确系统每一步操作的核心目标与产出,包括用户输入、团队自动协作、三大核心文档生成、协作流程可视化等环节,形成完整业务闭环。
3. 具体需求:细化各功能模块的输入、处理和输出
本节是SRS的主体,为需求落地和开发实现提供详尽蓝图。我将所有需求细分为功能、性能、接口、安全、数据等子模块。
3.1 功能需求
- 用户需求输入:设计表单页面,收集所有推广任务的关键信息,支持多参数校验,自动生成任务编号,用于后续进度追踪和数据管理。
- 广告投放建议书自动生成:
- 系统根据任务数据智能推荐适合平台及投放组合,给出投放渠道叠加分析与历史表现参考。
- 文档结构包括行业分析、竞品调研、平台选择理由、媒体组合与预算分配、ROI预测等,保障策略全面科学。
- 支持生成后的建议书直接导出为Word或PDF。
- 广告内容拍摄建议自动生成:
- 基于既定投放策略,AI智能推理拍摄脚本大纲和视觉风格建议,具体到场景、调性和执行要素。
- 形成结构化内容便于汇报和落地执行。
- PPT报告自动生成:
- 将项目概况、目标、策略、内容卖点等内容自动分页生成标准PPT,适配主流办公软件下载使用。
- 多智能体可视化协作流程:
- 所有AI角色按照团队流程分工协作,各流程节点状态可视化呈现。
- 核心节点如需求分析、策略输出、内容生成、文档编排均组成流程图或进度条展示。
- 每个智能体角色有独立工单分发、环节确认与前后流程回填机制,支持链式逻辑回退。
- 数据获取与分析:
- 后台定期同步AppGrowing等权威行业数据库,自动抽取最新市场动态,作为广告投放与内容分析的数据依据。
- 分析结论直接嵌入建议书与PPT关键板块。
- 交互与回填模式:
- 用户实时看到每一步文档和建议产出的进展详情,异常或失误时有明确提示与责任环节定位。
3.2 性能需求
- 所有核心文档(投放书、脚本建议、PPT)须在用户提交后数分钟内自动生产,支撑高频高效运营需求。
- 后台本地知识库需周期性维护,确保数据鲜活、分析结果与最新行业动态同步。
3.3 外部接口需求
- 前端界面须适配主流桌面和移动端浏览器,支持表单输入、进度查看和文档导出。
- 后端须高效对接deepseek、OpenAI等大模型API,保障AI智能体分工和自动报告能力。
- 对接AppGrowing等行业数据API,实现知识库自动更新。
3.4 数据需求
- 用户输入结构化存储,便于追溯和二次分析。
- 行业数据定期导入本地知识库,保证系统脱离API时亦能产出合格报告。
- 所有AI中间产出与最终文档须存留,支撑可视化与后续分析。
3.5 安全与保密性
- 所有用户及企业敏感数据采用加密存储,有权限隔离、日志审计和结果导出权限限制。
- 最终报告、历史建议等只限任务创建人访问,不得外泄。
3.6 软件质量特性
- 流程设计简明,操作路径直观、可追溯,出现意外可弹窗提示并定位原因。
- 代码与功能模块做到解耦独立,方便未来角色扩展、新功能加入。
- 严格适配各操作系统和主流浏览器环境。
- 支持后续业务拓展(如增加母婴、金融、游戏等不同行业的专属分析模块)。
3.7 其他需求
- 操作过程全日志留存,便于质控和回溯。
- 自带用户操作指南、常见问题解答与API接口文档,降低学习与维护成本。
4. 附录与知识资源管理
在SRS结尾,我系统整理了支持本项目的核心知识资料:
- 参考多智能体协作(如CAMEL框架)、ICLR多阶段开发新模型等顶级学术文献。
- Deepseek与OpenAI等核心API官方文档,保障研发成员快速查阅。
- AppGrowing广告市场数据平台数据规则与接口说明。
- 缩略语与名词表,详尽注解全流程涉及的专业术语,降低知识壁垒。
结语:SRS不是“功能列表”,而是系统工程的知识拼图
本次SRS撰写的实践过程中,我深刻体会到:一份高质量的SRS不仅要清晰细致地描述每一项功能,更需对整体业务流、角色分工、数据支撑及安全、性能等多角度进行系统性思考。只有将概念、流程、接口、验证标准等各环节有机衔接,才能为创新型AI系统的开发与落地提供坚实支撑。