深度学习
为了维护世界和平_
好好学习,天天向上
展开
-
ShufferNetV1 V2 网络+pytorch源码
ShufferNet v1channel shuffer的思想ShufferNet Unit 中全是GConv和DWconv原创 2022-02-03 09:10:08 · 580 阅读 · 2 评论 -
EfficientNetV1 V2网络理解+pytorch源码
同时探索输入分辨率,网络深度、宽度的影响EfficientNet-B7在 Imagenet top-1 上达到最高准确率84.3%原创 2022-02-02 10:09:17 · 2545 阅读 · 1 评论 -
MobileNetV1 V2 V3网络理解+pytorch源码
传统神经网络,内存需求大,运算量大无法在移动设备以及嵌入式设备上运行Mobilenet专注于移动端或者嵌入式设备中的轻量级CNN网络(相比VGG16准确率下降0.9%,但模型参数只有VGG1/32)原创 2022-02-01 20:27:01 · 2763 阅读 · 0 评论 -
HISI3559A 使用yolov3 (VI-VPSS-VO)实时目标检测
使用海思3559A yolov3实时目标检测 VI-VPSS-VO原创 2021-12-17 09:09:11 · 3401 阅读 · 20 评论 -
pytorch ResNet网络模型
网络中的亮点网络深度超过1000层提出残差模块,(不使用残差块,堆叠一定层,出现梯度消失)使用BN(Batch Normalization)加速训练(丢弃dropout)残差结构块如下import torch.nn as nnimport torch#18层 34层class BasicBlock(nn.Module): expansion = 1 # def __init__(self, in_channel, out_channel, stride=1,.原创 2021-12-15 20:56:36 · 452 阅读 · 0 评论 -
pytorch Vgg网络模型
Vgg网络结构图网络亮点通过堆叠多个3x3的卷积核来代替大尺寸卷积核(减少参数)堆叠两个3x3的卷积核代替一个5x5的卷积核,堆叠三个3x3的卷积核代替7X7卷积核import torch.nn as nnimport torch# official pretrain weightsmodel_urls = { 'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth', 'vgg13': 'h原创 2021-12-15 20:56:08 · 2117 阅读 · 0 评论 -
pytorch Alexnet 网络模型搭建
Alexnet 网络模型网络亮点首次使用GPU进行网络加速训练(是cpu的20-50倍速度)使用Relu激活函数,而不是传统的sigmoid激活函数及Tanh激活函数使用LRN局部相应归一化在全连接层的前两层使用了Dropout随机失活神经元操作,以减少过拟合pytorch 模型实现import torch.nn as nnimport torch#卷积核的数量仅仅用到论文中的一半class AlexNet(nn.Module): def __init__(self, n原创 2021-12-15 20:55:42 · 1639 阅读 · 0 评论 -
目标检测中的评价指标mAP以及coco评价标准
pycocotools安装Linux: pip install pycocotools;Windows: pip install pycocotools-windows训练过程中输出值 Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.534 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] =原创 2021-09-22 21:21:47 · 1380 阅读 · 1 评论 -
pytorch 训练时错误size mismatch for module_list.88.Conv2d.weight: copying a param with shape torch.Size
size mismatch for module_list.88.Conv2d.weight: copying a param with shape torch.Size([75, 1024, 1, 1]) from checkpoint, the shape in current model is torch.Size([255, 1024, 1, 1]).size mismatch for module_list.88.Conv2d.bias: copying a param with shape t原创 2021-07-28 23:31:04 · 6720 阅读 · 7 评论 -
pytorch训练出现的错: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized
OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.OMP: Hint This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade performance or cause incor原创 2021-07-28 23:26:47 · 711 阅读 · 0 评论 -
梯度下降算法在mnist手写数字识别中的比较
# coding: utf-8import osimport syssys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定import matplotlib.pyplot as pltfrom dataset.mnist import load_mnistfrom common.util import smooth_curvefrom common.multi_layer_net import MultiLayerNetfrom common.optim原创 2021-08-09 09:50:59 · 575 阅读 · 0 评论 -
python 梯度下降算法对比
# coding: utf-8import sys, ossys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定import numpy as npimport matplotlib.pyplot as pltfrom collections import OrderedDictfrom common.optimizer import *#原函数def f(x, y): return x**2 / 20.0 + y**2#函数求导def原创 2021-06-17 09:18:02 · 243 阅读 · 0 评论 -
mnist手写数字识别,可视化数据源
# coding: utf-8import sys, ossys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定import numpy as npfrom dataset.mnist import load_mnistfrom PIL import Imagedef img_show(img): pil_img = Image.fromarray(np.uint8(img)) pil_img.show()(x_train, t_tr原创 2021-06-09 07:42:10 · 160 阅读 · 0 评论 -
纯python实现两层神经网络,精确度和损失值绘图
python实现两层神经网络# coding: utf-8import sys, ossys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定from common.functions import *from common.gradient import numerical_gradientclass TwoLayerNet: def __init__(self, input_size, hidden_size, output_size, we原创 2020-11-29 22:29:07 · 2179 阅读 · 3 评论 -
机器学习 微分梯度python实现
用数值微分对简单函数进行求导# coding: utf-8import numpy as npimport matplotlib.pylab as plt#微分方程def numerical_diff(f, x): h = 1e-4 # 0.0001 return (f(x+h) - f(x-h)) / (2*h)#函数的表达形式def function_1(x): return 0.01*x**2 + 0.1*x #切线 x 为传入点5的斜率def t.原创 2020-11-29 21:18:43 · 447 阅读 · 0 评论 -
机器学习 损失函数——python实现
1)均方误差(mean squared error)程序实现def mean_squared_error(y, t): return 0.5 * np.sum((y-t)**2)举例: t = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]#假设第二个位置为正确值,ont-hot显示 y1 = [0.1, 0.05, 0.6, 0.0, 0.05, 0.1, 0.0, 0.1, 0.0, 0.0]#实际的向量,2的概率最大 val = mean_sq原创 2020-11-28 22:40:35 · 1125 阅读 · 0 评论 -
手写数字识别单一图像和批量图像—python实现
手写数字识别 python实现# coding: utf-8import sys, ossys.path.append(os.pardir) import numpy as npimport picklefrom dataset.mnist import load_mnistdef softmax(x): x = x - np.max(x) # 溢出对策 return np.exp(x) / np.sum(np.exp(x))def sigmoid(x): retu原创 2020-11-28 21:28:49 · 309 阅读 · 0 评论 -
python实现 softmax激活函数
softmax函数>>> a = np.array([0.3,2.9,4.0])>>> exp_a=np.exp(a)>>> print(exp_a)[ 1.34985881 18.17414537 54.59815003]>>> sum_exp_a = np.sum(exp_a)>>> print(sum_exp_a)74.1221542101633>>> y=exp_a/sum_原创 2020-11-28 20:22:50 · 1145 阅读 · 0 评论 -
python实现神经网络激活函数
激活函数激活函数必须为非线性函数,线性函数的问题在于,不管如何加深层数,等效于无隐藏层的神经网络。例如: 线性函数h(x) = cx作为激活函数,y(x) = h(h(h(x))) 三层神经网络,简化为y(x)=ccc*x,无法发挥多层网络带来的优势。1)阶跃函数:# coding: utf-8import numpy as npimport matplotlib.pylab as pltdef step_function(x): return np.array(x > 0,原创 2020-11-28 19:46:32 · 718 阅读 · 0 评论 -
感知机perceptron 与或非异或问题的编程实现
感知机 perceptron含义与门或门非门异或门含义感知机是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。f(x)=sign(w*x+b)与门与门仅在两个输入均为1时输出1,其他时候则输出0:# coding: utf-8import numpy as npimport matplotlib.pyplot as pltdef AND(x1, x2): x = np.array([x1, x2]) w = np.array([0.5原创 2020-11-28 17:41:24 · 794 阅读 · 0 评论 -
KeyError: “The name ‘image_tensor:0‘ refers to a Tensor which does not exist. The operation, ‘image_
github上给出的方法添加链接描述原创 2020-07-01 15:55:50 · 2957 阅读 · 0 评论 -
强化学习-训练营
百度强化学习_7天训练营:学习链接使用paddlepaddle框架的作业原创 2020-06-27 10:38:31 · 262 阅读 · 0 评论 -
基于MobileNetSSD_deploy模型的目标检测demo
模型下载地址 mobileNet_ssd# USAGE# python deep_learning_object_detection.py --image 0.jpg \# --prototxt MobileNetSSD_deploy.prototxt --model MobileNetSSD_deploy.caffemodel# import the necessary packagesimport numpy as npimport argparseimport cv2# con原创 2020-06-08 18:29:45 · 909 阅读 · 0 评论