EfficientNetV1 V2网络理解+pytorch源码

一、EfficientNet V1

1)Google2019发表的文章
2)论文中提出,EfficientNet-B7在Imagenet top-1上达到了当年最高准确率84.3%
3)与之前准确率最高的GPip相比,参数量仅仅为其1/8.4,推理速度提升了6.1倍

模型的大小与准确率对比如下(Top1)
在这里插入图片描述
同时探索输入分辨率,网络的深度,宽度的影响(图E)
宽度:特征矩阵的channel

在这里插入图片描述
增加网络的深度depth能够得到更加丰富、复杂的特征。但面临梯度消失,训练困难的问题。

增加网络的width能够获得更高细粒度的特征并且也更容易训练,但对于witdh很大而深度较浅的网络很难学习更深层次的特征

增加输入图片的分辨率能够潜在获得更高细粒度的特征模板,但对于非常高的输入分辨率,准确率的增益也会减小,并且分辨率图像会增加计算量
在这里插入图片描述
单独的宽度、深度、分辨率,在准确率达到80%基本饱和了,但同时改变则可以超过82%。

网络结构
EfficientNet-B0
在这里插入图片描述
Channel 输出特征矩阵个数
layers:重复MBConv多少次

MBConv
在这里插入图片描述

  • 第一个升维的1x1卷积层,它的卷积核个数是输入特征矩阵channel的n倍(表格中的1 6)
  • 当n=1时,不要第一个升维的1x1卷积层,即Stage2中的MBConv1结构都没有第一个升维1x1卷积层
  • shortcut连接,仅当输入MBConv结构的特征矩阵与输入的特征矩阵shape相同时才存在。

SE模块
一个全局平均池化,两个全连接层
第一个全连接层

  • 节点个数是输入该MBConv特征矩阵的1/4
  • 激活函数:Swish。

第二个全连接层的

  • 节点个数等于Depthwise Conv层输出的特征矩阵channels
  • 激活函数:sigmoid
    在这里插入图片描述

在这里插入图片描述
width_coefficient代表channel维度的倍率因子,如下
在这里插入图片描述
32*1.8=57.6 取到离它最近的8的证书倍即56

depth_coefficient代表depth维度上的倍率因子,从Stage2-Stage8
在这里插入图片描述
4*2.6=10.4 向上取证即11

性能对比
在这里插入图片描述
1)准确率高
2)参数个数少
3)占用GPU的内存,推理速度与FLOPS不是直接相关的

二、EfficientNet V2

1)2021.4 CVPR 上发表
2) 引入Fused-MBConv模块
3)引入渐进式学习策略(训练更快)
4)Top-1达到87.3%

训练速度提升11倍,参数量减少1/6.8
在这里插入图片描述
由上图得知,V2准确率高,速度快

EfficientNetV1中,关注的是准确率,参数数量以及FLOPs,在EfficientV2中作者关注模型的训练速度。
在这里插入图片描述
在这里插入图片描述

Efficientv1中存在的问题以及V2的解决方法

  • 训练图像的尺寸很大时,训练速度慢
    在这里插入图片描述
    1)小尺寸的准确率反而高一些
    2)batch=24的时候,出现内存溢出,而batch在训练时大一些好,所以降低训练图片尺寸

  • 在网络浅层中使用Depthwise convolution 速度很慢
    无法重复使用加速器,将MBConv 替换为FusedMBConv
    在这里插入图片描述
    在这里插入图片描述

    Fused stage1-3浅层 最优

  • 同等放大每个stage是次优的
    深度和宽度是同等放大的,但每个stage对网络的训练速度以及参数数量的贡献并不相同,直接使用同等缩放策略不合理。作者使用了非均匀的缩放策略来缩放模型。

EfficientV2网络框架
在这里插入图片描述
Layers:重复的次数
Stride:步距 2(对第一层而言)

  • 除了使用MBConv 模块,还使用Fused-MBConv模块
  • 使用较小的expansion ratio
  • 偏向使用更小的kernel_size(3x3)
  • 移除了EfficientNetV1中最后一个步距为1的stage

Fused-MBConv模块

在这里插入图片描述

Progressive Learning 渐进式学习策略
在这里插入图片描述
在训练不同的图片尺寸时,使用不同的正则化方法的强度。
训练早期使用较小的训练尺寸以及较弱的正则化方法weak regularization。接着逐渐提升图像尺寸,同时增强正则化方法。regularization包括Dropout,RandAugment以及Mixup

在这里插入图片描述
渐进式策略使用在其它模型上,精度与速度均有所提升
在这里插入图片描述

三、源码

EfficientNetV2

from collections import OrderedDict
from functools import partial
from typing import Callable, Optional

import torch.nn as nn
import torch
from torch import Tensor


def drop_path(x, drop_prob: float = 0., training: bool = False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    "Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf

    This function is taken from the rwightman.
    It can be seen here:
    https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py#L140
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """
    Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    "Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class ConvBNAct(nn.Module):
    def __init__(self,
                 in_planes: int,
                 out_planes: int,
                 kernel_size: int = 3,
                 stride: int = 1,
                 groups: int = 1,
                 norm_layer: Optional[Callable[..., nn.Module]] = None,
                 activation_layer: Optional[Callable[..., nn.Module]] = None):
        super(ConvBNAct, self).__init__()

        padding = (kernel_size - 1) // 2
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if activation_layer is None:
            activation_layer = nn.SiLU  # alias Swish  (torch>=1.7)

        self.conv = nn.Conv2d(in_channels=in_planes,
                              out_channels=out_planes,
                              kernel_size=kernel_size,
                              stride=stride,
                              padding=padding,
                              groups=groups,
                              bias=False)

        self.bn = norm_layer(out_planes)
        self.act = activation_layer()

    def forward(self, x):
        result = self.conv(x)
        result = self.bn(result)
        result = self.act(result)

        return result


class SqueezeExcite(nn.Module):
    def __init__(self,
                 input_c: int,   # block input channel
                 expand_c: int,  # block expand channel
                 se_ratio: float = 0.25):
        super(SqueezeExcite, self).__init__()
        squeeze_c = int(input_c * se_ratio)
        self.conv_reduce = nn.Conv2d(expand_c, squeeze_c, 1)
        self.act1 = nn.SiLU()  # alias Swish
        self.conv_expand = nn.Conv2d(squeeze_c, expand_c, 1)
        self.act2 = nn.Sigmoid()

    def forward(self, x: Tensor) -> Tensor:
        scale = x.mean((2, 3), keepdim=True)
        scale = self.conv_reduce(scale)
        scale = self.act1(scale)
        scale = self.conv_expand(scale)
        scale = self.act2(scale)
        return scale * x

class MBConv(nn.Module):
    def __init__(self,
                 kernel_size: int,
                 input_c: int,
                 out_c: int,
                 expand_ratio: int,
                 stride: int,
                 se_ratio: float,
                 drop_rate: float,
                 norm_layer: Callable[..., nn.Module]):
        super(MBConv, self).__init__()

        if stride not in [1, 2]:
            raise ValueError("illegal stride value.")

        self.has_shortcut = (stride == 1 and input_c == out_c)

        activation_layer = nn.SiLU  # alias Swish
        expanded_c = input_c * expand_ratio

        # 在EfficientNetV2中,MBConv中不存在expansion=1的情况所以conv_pw肯定存在
        assert expand_ratio != 1
        # Point-wise expansion
        self.expand_conv = ConvBNAct(input_c,
                                     expanded_c,
                                     kernel_size=1,
                                     norm_layer=norm_layer,
                                     activation_layer=activation_layer)

        # Depth-wise convolution
        self.dwconv = ConvBNAct(expanded_c,
                                expanded_c,
                                kernel_size=kernel_size,
                                stride=stride,
                                groups=expanded_c,
                                norm_layer=norm_layer,
                                activation_layer=activation_layer)

        self.se = SqueezeExcite(input_c, expanded_c, se_ratio) if se_ratio > 0 else nn.Identity()

        # Point-wise linear projection
        self.project_conv = ConvBNAct(expanded_c,
                                      out_planes=out_c,
                                      kernel_size=1,
                                      norm_layer=norm_layer,
                                      activation_layer=nn.Identity)  # 注意这里没有激活函数,所有传入Identity

        self.out_channels = out_c

        # 只有在使用shortcut连接时才使用dropout层
        self.drop_rate = drop_rate
        if self.has_shortcut and drop_rate > 0:
            self.dropout = DropPath(drop_rate)

    def forward(self, x: Tensor) -> Tensor:
        result = self.expand_conv(x)
        result = self.dwconv(result)
        result = self.se(result)
        result = self.project_conv(result)

        if self.has_shortcut:
            if self.drop_rate > 0:
                result = self.dropout(result)
            result += x

        return result


class FusedMBConv(nn.Module):
    def __init__(self,
                 kernel_size: int,
                 input_c: int,
                 out_c: int,
                 expand_ratio: int,
                 stride: int,
                 se_ratio: float,
                 drop_rate: float,
                 norm_layer: Callable[..., nn.Module]):
        super(FusedMBConv, self).__init__()

        assert stride in [1, 2]
        assert se_ratio == 0

        self.has_shortcut = stride == 1 and input_c == out_c
        self.drop_rate = drop_rate

        self.has_expansion = expand_ratio != 1

        activation_layer = nn.SiLU  # alias Swish
        expanded_c = input_c * expand_ratio

        # 只有当expand ratio不等于1时才有expand conv
        if self.has_expansion:
            # Expansion convolution
            self.expand_conv = ConvBNAct(input_c,
                                         expanded_c,
                                         kernel_size=kernel_size,
                                         stride=stride,
                                         norm_layer=norm_layer,
                                         activation_layer=activation_layer)

            self.project_conv = ConvBNAct(expanded_c,
                                          out_c,
                                          kernel_size=1,
                                          norm_layer=norm_layer,
                                          activation_layer=nn.Identity)  # 注意没有激活函数
        else:
            # 当只有project_conv时的情况
            self.project_conv = ConvBNAct(input_c,
                                          out_c,
                                          kernel_size=kernel_size,
                                          stride=stride,
                                          norm_layer=norm_layer,
                                          activation_layer=activation_layer)  # 注意有激活函数

        self.out_channels = out_c

        # 只有在使用shortcut连接时才使用dropout层
        self.drop_rate = drop_rate
        if self.has_shortcut and drop_rate > 0:
            self.dropout = DropPath(drop_rate)

    def forward(self, x: Tensor) -> Tensor:
        if self.has_expansion:
            result = self.expand_conv(x)
            result = self.project_conv(result)
        else:
            result = self.project_conv(x)

        if self.has_shortcut:
            if self.drop_rate > 0:
                result = self.dropout(result)

            result += x

        return result
class EfficientNetV2(nn.Module):
    def __init__(self,
                 model_cnf: list,
                 num_classes: int = 1000,
                 num_features: int = 1280,
                 dropout_rate: float = 0.2,
                 drop_connect_rate: float = 0.2):
        super(EfficientNetV2, self).__init__()

        for cnf in model_cnf:
            assert len(cnf) == 8

        norm_layer = partial(nn.BatchNorm2d, eps=1e-3, momentum=0.1)

        stem_filter_num = model_cnf[0][4]

        self.stem = ConvBNAct(3,
                              stem_filter_num,
                              kernel_size=3,
                              stride=2,
                              norm_layer=norm_layer)  # 激活函数默认是SiLU

        total_blocks = sum([i[0] for i in model_cnf])
        block_id = 0
        blocks = []
        for cnf in model_cnf:
            repeats = cnf[0]
            op = FusedMBConv if cnf[-2] == 0 else MBConv
            for i in range(repeats):
                blocks.append(op(kernel_size=cnf[1],
                                 input_c=cnf[4] if i == 0 else cnf[5],
                                 out_c=cnf[5],
                                 expand_ratio=cnf[3],
                                 stride=cnf[2] if i == 0 else 1,
                                 se_ratio=cnf[-1],
                                 drop_rate=drop_connect_rate * block_id / total_blocks,
                                 norm_layer=norm_layer))
                block_id += 1
        self.blocks = nn.Sequential(*blocks)

        head_input_c = model_cnf[-1][-3]
        head = OrderedDict()

        head.update({"project_conv": ConvBNAct(head_input_c,
                                               num_features,
                                               kernel_size=1,
                                               norm_layer=norm_layer)})  # 激活函数默认是SiLU

        head.update({"avgpool": nn.AdaptiveAvgPool2d(1)})
        head.update({"flatten": nn.Flatten()})

        if dropout_rate > 0:
            head.update({"dropout": nn.Dropout(p=dropout_rate, inplace=True)})
        head.update({"classifier": nn.Linear(num_features, num_classes)})

        self.head = nn.Sequential(head)

        # initial weights
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def forward(self, x: Tensor) -> Tensor:
        x = self.stem(x)
        x = self.blocks(x)
        x = self.head(x)

        return x


def efficientnetv2_s(num_classes: int = 1000):
    """
    EfficientNetV2
    https://arxiv.org/abs/2104.00298
    """
    # train_size: 300, eval_size: 384

    # repeat, kernel, stride, expansion, in_c, out_c, operator, se_ratio
    model_config = [[2, 3, 1, 1, 24, 24, 0, 0],
                    [4, 3, 2, 4, 24, 48, 0, 0],
                    [4, 3, 2, 4, 48, 64, 0, 0],
                    [6, 3, 2, 4, 64, 128, 1, 0.25],
                    [9, 3, 1, 6, 128, 160, 1, 0.25],
                    [15, 3, 2, 6, 160, 256, 1, 0.25]]

    model = EfficientNetV2(model_cnf=model_config,
                           num_classes=num_classes,
                           dropout_rate=0.2)
    return model

训练

[valid epoch 29] loss: 0.163, acc: 0.956: 100%|

tensorboard
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

为了维护世界和平_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值