卷积神经网络笔记

一、二维卷积层(用于处理图像数据)
1.二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与 该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。
2.二维卷积层
二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。卷积层的模型参数包括卷积核和标量偏置。
3.互相关运算与卷积运算
卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。
4.特征图与感受野
二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素 x 的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做 x 的感受野(receptive field)。可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。
5.填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素)。如果原输入的高和宽是 nh 和 nw ,卷积核的高和宽是 kh 和 kw ,在高的两侧一共填充 ph 行,在宽的两侧一共填充 pw 列,则输出形状为:

(nh+ph−kh+1)×(nw+pw−kw+1)

我们在卷积神经网络中使用奇数高宽的核,比如 3×3 , 5×5 的卷积核,对于高度(或宽度)为大小为 2k+1 的核,令步幅为1,在高(或宽)两侧选择大小为 k 的填充,便可保持输入与输出尺寸相同。
在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。一般来说,当高上步幅为 sh ,宽上步幅为 sw 时,输出形状为:

⌊(nh+ph−kh+sh)/sh⌋×⌊(nw+pw−kw+sw)/sw⌋

如果 ph=kh−1 , pw=kw−1 ,那么输出形状将简化为 ⌊(nh+sh−1)/sh⌋×⌊(nw+sw−1)/sw⌋ 。更进一步,如果输入的高和宽能分别被高和宽上的步幅整除,那么输出形状将是 (nh/sh)×(nw/sw) 。

当 ph=pw=p 时,我们称填充为 p ;当 sh=sw=s 时,我们称步幅为 s 。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值