Java SE高级-JUC并发编程二

线程池
线程池三大方法
四种拒绝策略
CPU密集型和IO密集型
ForkJoin详情
异步回调

线程池
  • 运行程序的本质,占用系统资源。优化资源的使用->池化技术
  • 三大方法、七大参数、四种拒绝策略
池化技术
  • 实现准备一些资源,有人要用,从这里拿出去,用完后放回来
线程池技术
  • 降低资源消耗
  • 提高响应速度
  • 方便管理
  • 线程复用,可以控制最大并发数,管理线程
线程池3大方法
源码分析
//核心线程数
//最大线程数
//超时等待
//超时等待时间单位
//阻塞队列(候客区)
//线程工厂
//拒绝策略
    public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) {
        this.ctl = new AtomicInteger(ctlOf(-536870912, 0));
        this.mainLock = new ReentrantLock();
        this.workers = new HashSet();
        this.termination = this.mainLock.newCondition();
        if (corePoolSize >= 0 && maximumPoolSize > 0 && maximumPoolSize >= corePoolSize && keepAliveTime >= 0L) {
            if (workQueue != null && threadFactory != null && handler != null) {
                this.corePoolSize = corePoolSize;
                this.maximumPoolSize = maximumPoolSize;
                this.workQueue = workQueue;
                this.keepAliveTime = unit.toNanos(keepAliveTime);
                this.threadFactory = threadFactory;
                this.handler = handler;
            } else {
                throw new NullPointerException();
            }
        } else {
            throw new IllegalArgumentException();
        }
    }

在这里插入图片描述

四种拒绝策略

在这里插入图片描述

import java.util.concurrent.*;

/**
 * Executor 工具类、3大方法
 */

/**
 * 四种拒绝策略
 * new ThreadPoolExecutor.AbortPolicy()银行满了,还有人要进去,不处理,抛出异常
 * new ThreadPoolExecutor.CallerRunsPolicy() 哪来的去哪里
 * new ThreadPoolExecutor.DiscardPolicy() 队列满了不会抛出异常
 * new ThreadPoolExecutor.DiscardPolicy() 队列满了
 */
public class Demo01 {
    public static void main(String[] args) {
        //单个线程
        //ExecutorService threadPool = Executors.newSingleThreadExecutor();
        //ExecutorService threadPool = Executors.newFixedThreadPool(5); //创建5个现成的线程池
        //ExecutorService threadPool = Executors.newCachedThreadPool();  //可伸缩的,遇强则强,遇弱则弱
        //核心线程数
//最大线程数
//超时等待
//超时等待时间单位
//阻塞队列(候客区)
//线程工厂
//拒绝策略
        ExecutorService threadPool = new ThreadPoolExecutor(
                2,
                5,
                3,
                TimeUnit.SECONDS,
                new LinkedBlockingDeque<>(3),
                Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.DiscardOldestPolicy());


        try {
            //最大承载:Deque + max
            //超过抛出异常
            for (int i = 0; i < 9; i++) {
                //使用线程池来创建线程
                threadPool.execute(()->{
                    System.out.println(Thread.currentThread().getName() + " ok");
                });
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            //关闭线程池
            threadPool.shutdown();
        }
    }
}

小结和拓展
  • 定义最大线程
    1、CPU密集型 几核就定义为几,可以保持CPU效率最高
    2、IO密集型 > 程序中十分耗IO的线程,一般可以设置为耗IO资源线程的2倍
//获取当前运行机器的线程数
Runtime.getRuntime().availableProcessors()
ForkJoin详情
  • ForkJoin再jdk1.7之后,并行执行任务,提高效率,适合大数据量
  • 把大任务拆分为小任务
  • 特点:工作窃取(可以提高效率)在这里插入图片描述
    在这里插入图片描述
import java.util.concurrent.RecursiveTask;

public class ForkJoinDemo extends RecursiveTask<Long> {
    private Long start;
    private Long end;

    //临界值
    private Long temp = 10000L;

    public ForkJoinDemo(Long start, Long end) {
        this.start = start;
        this.end = end;
    }


    //计算方法
    @Override
    protected Long compute() {
        if (end - start > temp) {
            Long mid = (start + end) / 2;
            ForkJoinDemo task1 = new ForkJoinDemo(start, mid);
            task1.fork();  //拆分任务,把任务压入线程队列
            ForkJoinDemo task2 = new ForkJoinDemo(mid + 1, end);
            task2.fork();  //拆分任务,把任务压入线程队列
            return task1.join() + task2.join();
        } else {
            Long sum = 0L;
            for (Long i = start; i <= end; i++) {
                sum += i;
            }
            return sum;
        }
    }
}
forkjoin案例
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;

public class Test {
    public static void main(String[] args) {
        test3();
    }

    //普通程序员
    public static void test1() {
        Long sum = 0L;
        Long start = System.currentTimeMillis();
        for (Long i = 1L; i <= 10_0000_0000; i++) {
            sum += i;
        }
        Long end = System.currentTimeMillis();
        System.out.println("sum = " + sum + "时间:" + (end - start));
    }
    //forkjoin
    public static void test2() {
        Long start = System.currentTimeMillis();

        ForkJoinPool forkJoinPool = new ForkJoinPool();
        //创建一个对象
        ForkJoinTask<Long> task = new ForkJoinDemo(0L, 10_0000_0000L);
        ForkJoinTask<Long> submit = forkJoinPool.submit(task);  //提交任务
        try {
            Long sum = submit.get();
            Long end = System.currentTimeMillis();
            System.out.println("sum = " + sum + "时间:" + (end - start));
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }

    }

    /**
     * 使用stream并行流
     */
    public static void test3() {
        Long start = System.currentTimeMillis();
        Long sum = LongStream.rangeClosed(0L, 10_0000_0000L).parallel().reduce(0, Long :: sum);
        Long end = System.currentTimeMillis();
        System.out.println("sum = " + sum + "时间:" + (end - start));
    }
}



异步回调
  • Future设计的初衷,对将来的某个事件的结果进行建模
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;

/**
 * 异步调用:Ajax
 */
public class Demo01 {
    public static void main(String[] args) {
        //发起一个请求
        //runAsync 无返回值的异步回调
        CompletableFuture<Void> completableFuture = CompletableFuture.runAsync(()->{
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName() + "runAsync=void");
        });
        System.out.println("1111");
        //获取阻塞执行结果
        try {
            completableFuture.get();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }

        //有返回值的异步回调
        CompletableFuture<Integer> completableFuture1 = CompletableFuture.supplyAsync(()->{
            System.out.println(Thread.currentThread().getName() + "supplyAsync=Integer");
            return 1024;
        });

        try {
            System.out.println(completableFuture1.whenComplete((t, u)->{
                System.out.println("t=" + t);  //正常的返回结果
                System.out.println("u=" + u);  //错误信息
            }).exceptionally((e)->{
                e.printStackTrace();
                return 223;   //可以获取到错误的返回结果
            }).get());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值