令人窒息的一道(shui)题。
纯暴力地考虑。
用next_permutation求下一个排列,set去重。这样可是能过的呀。
scanf("%d\n",&T);
while(T--)
{
scanf("%s",s);scanf("%d\n",&p);
len=strlen(s);
for(int i=1;i<=len;i++)A[i]=s[i-1]-'0';
sort(A+1,A+len+1);
ans=0;
E.clear();
while(1)
{
num=0;
for(int i=1;i<=len;i++)num=(long long)num*10+A[i];
if(E.count(num)==0&&num%p==0)
{
ans++;
E.insert(num);
}
if(!next_permutation(A+1,A+len+1))break;
}
printf("%d\n",ans);
}
妙吧。。。
不过,还有正常的方法的。。
状压dp,f[i][j],状态为i时,余数为j的方案数。
转移。
但是,这样会有重复的。
感性认知,当一个数出现了n次时,答案除以一个n的阶乘就好了。
#include<bits/stdc++.h>
using namespace std;
int T,A[15],len,p,ans;
char s[15];
set <long long> E;
long long num;
int f[1030][1005];
int cnt[10];
inline char nc()
{
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
int x=0,b=1;
char c=nc();
for(;!(c<='9'&&c>='0');c=nc())if(c=='-')b=-1;
for(;c<='9'&&c>='0';c=nc())x=x*10+c-'0';
return x*b;
}
inline void write(int x)
{
if(x==0)putchar('0');
else
{
char buf[15];
int len=0;
if(x<0)putchar('-'),x=-x;
while(x)buf[++len]=x%10+'0',x/=10;
for(int i=len;i>=1;i--)putchar(buf[i]);
}
putchar('\n');
}
int main()
{
freopen("in.txt","r",stdin);
/*---------------------------暴力-----------------------------*/
// scanf("%d\n",&T);
// while(T--)
// {
// scanf("%s",s);scanf("%d\n",&p);
// len=strlen(s);
// for(int i=1;i<=len;i++)A[i]=s[i-1]-'0';
// sort(A+1,A+len+1);
// ans=0;
// E.clear();
// while(1)
// {
// num=0;
// for(int i=1;i<=len;i++)num=(long long)num*10+A[i];
// if(E.count(num)==0&&num%p==0)
// {
// ans++;
// E.insert(num);
// }
// if(!next_permutation(A+1,A+len+1))break;
// }
// printf("%d\n",ans);
// }
/*---------------------------暴力-----------------------------*/
scanf("%d\n",&T);
while(T--)
{
scanf("%s%d\n",s,&p);
len=strlen(s);
memset(cnt,0,sizeof(cnt));
for(int i=1;i<=len;i++)A[i]=s[i-1]-'0';
for(int i=1;i<=len;i++)cnt[A[i]]++;
memset(f,0,sizeof(f));
f[0][0]=1;
for(int i=0;i<=(1<<len)-1;i++)
for(int j=0;j<p;j++)
for(int k=1;k<=len;k++)
if((i&(1<<(k-1)))==0)
f[i|(1<<(k-1))][(j*10+A[k])%p]+=f[i][j];
ans=f[(1<<len)-1][0];
for(int i=0;i<=9;i++)
for(int j=1;j<=cnt[i];j++)
ans/=j;
printf("%d\n",ans);
}
return 0;
}