求​​​​​​​​​​​​​​​​​​​​​​​​​​​​n维空间中点到超平面的距离公式推导

       问题: 假设我们知道R^n空间中的一个超平面S:w\cdot x+b=0,和R^n中的一个点x_0,(w,x,x_0是n维列向量),如何求得x_0到超平面S的距离?

       首先给出距离公式:

       d_0 =\frac{ \left | w\cdot x_0+b \right |}{\left \| w \right \|}

       推导(1):

       首先,对于向量a,b,我们知道a\cdot b = ||a|| ||b||cos\theta。而ab上的投影长度为||a||cos\theta

       对于超平面S,w是超平面的法向量,我们在超平面上取一点x,向量(x_0-x)w上的投影长度||x_0-x||cos\theta就是x_0到超平面的距离d_0,根据上面的点积公式,有下面的等式成立:

        (x_0-x)\cdot w=||x_0-x||cos\theta ||w||

        -> (x_0-x)\cdot w = d_0||w||

        ->d_0 = |\frac{(x_0-x)\cdot w}{||w||}|

        ->d_0=\frac{|x_0\cdot w - x\cdot w|}{||w||}

        ->d_0=\frac{|w\cdot x_0+b|}{||w||}

       推导结束。

       推导(2):

       我们在超平面上取一点x,向量p是向量(x_0-x)在超平面法向量w上的投影向量,通过投影矩阵,p的表达式如下:

         p=\frac{ww^T}{w^Tw}(x_0-x) , 将上式做如下改写:

         p = \frac{w}{||w||^2}(w^Tx_0-w^Tx)

         p = \frac{w}{||w||^2}(w\cdot x_0-w\cdot x)

         p = \frac{(w\cdot x_0+b)}{||w||^2}w

       则超x_0到超平面的距离d_0 = ||p||\therefore

         d_0=\frac{|w\cdot x_0+b|}{||w||^2}||w||

         d_0 = \frac{|w\cdot x_0+b|}{||w||}

        推导结束。

       

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值