数学
文章平均质量分 52
_晴少_
快乐是一种选择
展开
-
引子
引子:2014年从中国科学院长春光机所毕业,一晃至今(2108/9/18)也已经快5年了,近5年来作为一个程序员一直在一线工作,做工程、写程序、解决问题,我觉得有必要重新审视知识(数学和工程背景学科)的重要性,程序语言和技巧只是工具,也许再过5年10年它就像上世纪的中国农民手中的锄头一样,重要的是你能用它创造什么。恰恰在在这近5年里我大部分时间都花在这门工具的学习和使用上,却停滞和丢掉了对数学...原创 2018-09-18 11:18:57 · 375 阅读 · 0 评论 -
图和网络-线性代数课时12(MIT Linear Algebra , Gilbert Strang)
这是Strang教授的第十二讲,讲解的内容是关于线性代数的一个重要应用:图和网络,理论结合实践,展示数学在工程实践中的重要地位,学完本节课,你会发现很多物理系统,比如力学系统、电学系统,生物学系统,经济学系统,计算机科学领域里的系统,...,都可以用线性代数建模求解。有向图和关联矩阵 在上一节课的最后(矩阵空间、秩1矩阵和小世界图-线性代数课时11(MIT L...原创 2018-10-24 14:03:04 · 1172 阅读 · 0 评论 -
正交向量与子空间-线性代数课时14(MIT Linear Algebra , Gilbert Strang)
这是Strang教授的第十四讲,讲解的内容是正交的概念、四个子空间的正交关系,并在四个子空间的正交关系上解释Ax=b的解在四个子空间的映射关系,更进一步理解Ax=b,另外稍微提及了当Ax=b无解的时候怎样求解?正交概念 两个向量v和w正交意思是向量v垂直于w,那么如何判断向量v和w正交呢?在几何上可以通过判断v和w的夹角为90°,那么在线性代数里是通过计算v...原创 2018-10-26 17:56:19 · 677 阅读 · 0 评论 -
矩阵空间、秩1矩阵和小世界图-线性代数课时11(MIT Linear Algebra , Gilbert Strang)
这是Strang教授的第十一讲,讲解的内容是矩矩阵空间(一个新的“向量”空间)的一组基,秩1矩阵的特殊性和小世界图(small world graphs),小世界图引出图论与线性代数的关系。矩阵空间 矩阵空间满足向量空间的定义,对加法和数乘封闭。比如所有的3x3实数矩阵构成一个空间M,3x3对称矩阵矩阵构成它的一个子空间S,3x3的上三角矩阵同样构成它的一个子...原创 2018-10-23 11:01:42 · 1489 阅读 · 0 评论 -
四个基本子空间-线性代数课时10(MIT Linear Algebra , Gilbert Strang)
这是Strang教授的第十讲,讲解的内容是矩阵的4个基本子空间,包括前面介绍过的列空间、零空间还有另外两个子空间,理解这4个基本子空间对学习线性代数十分重要。四个基本子空间 对于矩阵A,它的四个基本子空间指的是: 1. 列空间 ,在内; 2. 零空间 ,在内; 3. 行空间 ,在内; ...原创 2018-10-22 17:45:12 · 1098 阅读 · 1 评论 -
线性相关性、基、维数-线性代数课时9(MIT Linear Algebra , Gilbert Strang)
这是Strang教授的第九讲,讲解的内容是线性相关性、基的概念和维数的概念。背景知识 对于未知数个数大于方程个数的线性方程组,我们知道对于Ax=0一定有非零解,原因是在消元过程中一定存在自由变量。线性相关性 定义1:对于向量,如果当且仅当=0成立,那么向量线性无关。 定义2:如果是矩阵A的列向量,当且仅当Ax=0只有0...原创 2018-10-22 11:45:55 · 609 阅读 · 2 评论 -
求解3维空间中点到直线的距离
最近在工程上遇到一个比较实际也比较常见的问题,就是求三维空间上任意一个点b到某条直线uv(u,v是直线上的两个点)的距离。如果用几何解法,思路:求解过b且垂直于直线uv的直线方程,两个直线方程求焦点a,计算点a到点b的欧式距离。这种解法十分繁琐,且公式推导十分麻烦。 还好我知道线性代数里有个叫投影矩阵的东西,如下图点b到过原点和点a的直线的距离就是向量e的模长||...原创 2018-10-10 10:20:44 · 27384 阅读 · 4 评论 -
转置,置换和向量空间R-线性代数课时5(MIT Linear Algebra , Gilbert Strang)
这是Strang教授的第五讲,讲解的内容主要关于矩阵的转置、置换矩阵和开始介绍向量空间的相关内容。置换矩阵(Permutation Matrices) 置换矩阵是用来进行矩阵行变换的矩阵,教授前面几讲在讲解消元的时候有一个隐含的假设:A的行排列完美,消元过程中不需要交换。而实际应用中大部分情况下A并不是这样完美的矩阵,消元过程中会发现某个主元位置为0了,需要...原创 2018-10-12 14:37:44 · 585 阅读 · 1 评论 -
改进的格拉姆-施密特正交化(modified Gram-Schmidt Process)
最近在重新学习线性代数,学习的教材是MIT Gilbert Strang 教授的《INTRODUCTION TO LINEAR ALGEBRA》,在第4.4章节格拉姆-施密特正交化时,书中章节末尾介绍了一种改进的格拉姆-施密特正交化方法,但书中给出了公式,省略了很多细节,给学习理解造成了一定的难度,为自己今后或者遇到同样问题的朋友记录一下公式的来由。 首先,介绍一...原创 2018-10-07 13:33:59 · 13629 阅读 · 4 评论 -
A的LU分解-线性代数课时4(MIT Linear Algebra , Gilbert Strang)
这是Strang教授的第四讲,讲解的内容是矩阵的LU分解,LU分解是线性代数中矩阵的一个重要分解,它将原矩阵分解成一个下三角阵和一个上三角阵的乘积形式,L和U源于字母Lower和Upper。矩阵的LU分解在教授讲解矩阵消元过程中就已经初见端倪了(矩阵消元-线性代数课时2(MIT Linear Algebra , Gilbert Strang)。A=LU A=L...原创 2018-10-09 00:00:13 · 827 阅读 · 6 评论 -
求解Ax=b:可解性和解的结构-线性代数课时8(MIT Linear Algebra , Gilbert Strang)
这是Strang教授的第八讲,上一讲讲了求解Ax=0,也就是求解矩阵的零空间,这节课将讲解求解完整的线性方程组Ax=b,以及它解的各种可能性。消元法求解Ax=b示例 上一讲求解了Ax=0,消元法将问题Ax=0转换为Rx=0,R中的自由变量给出了Ax=0的特解。因为右侧变量在消元前后始终为零,所以我们并没有关注右侧变量的变化,上节课中的解x是A的零空间。本节课...原创 2018-10-15 12:30:40 · 879 阅读 · 4 评论 -
镜像矩阵(Reflection)
镜像(反射)矩阵是n维空间中的沿n-1维平面的一种矩阵变换,常见的应用场景是在2维空间图像处理、3维空间物体场景变换。先直观看看镜像变换的效果: 直观的感受了镜像变换的效果之后,接下来我们看看这个变换的数学表达式是什么样的。首先n维度空间的镜像变换是基于某个n-1...原创 2018-09-28 19:39:42 · 24162 阅读 · 1 评论 -
求解Ax=0:主变量,特解-线性代数课时7(MIT Linear Algebra , Gilbert Strang)
这是Strang教授的第七讲,这节课是一个转折,它从定义转向算法,这节课主要内容是求解矩阵的零空间,通过一个例子讲解了通过消元法求解Ax=0,并在贯通例子的过程中介绍了几个新的概念:特解、主变量、自由变量、主列、自由列、阶梯矩阵U和简化的行阶梯形式,另外讲解了矩阵秩的概念。特解 第6讲(列空间和零空间-线性代数课时6(MIT Linear Algebra , ...原创 2018-10-13 19:40:09 · 1058 阅读 · 2 评论 -
列空间和零空间-线性代数课时6(MIT Linear Algebra , Gilbert Strang)
这是Strang教授的第六讲,讲解的内容是线性代数里的俩个最重要向量子空间:列空间和零空间,同时还有上节课剩余的一点关于向量空间的问题。1.向量空间和子空间;2.列空间;3.零空间。1.向量空间和子空间 这里还有一点关于向量空间和子空间的问题。假设有两个向量子空间P和L,回答下面两个问题:1.是向量子空间吗?2.是向量子空间吗?下面直接给出问题的答案: ...原创 2018-10-13 16:26:16 · 664 阅读 · 0 评论 -
矩阵乘法和逆矩阵-线性代数课时3(MIT Linear Algebra , Gilbert Strang)
这是Strang教授的第三讲,讲解的内容是矩阵乘法和矩阵的逆。矩阵乘法在前面已经使用过,本节课教授只是集中细致的讲解矩阵乘法满足的定律和几种计算矩阵乘法的方法,矩阵的逆是本节课的重要内容。矩阵乘法 首先介绍矩阵运算的条件和满足的运算规律,矩阵可以做加法运算和乘法运算。 加法运算条件: 矩阵A和B大小一样,加法运算满足3条定律: ...原创 2018-09-23 18:09:53 · 996 阅读 · 4 评论 -
矩阵消元-线性代数课时2(MIT Linear Algebra , Gilbert Strang)
这是Strang教授的第二讲,讲解了求线性方程组的一种系统方法:消元法(Gaussian elimination),它的核心思想是行变换。本课时的几个核心知识点:消元、回代、消元过程的矩阵描述和逆矩阵。消元 消元的思想在解线性方程组的过程中出现得很自然,并不需要很多技巧和复杂的公式,我们在中学时代就已经使用过。以3个未知数、3个方程的线性方程组为例,介绍消元的...原创 2018-09-21 11:03:55 · 514 阅读 · 0 评论 -
方程组的几何解释-线性代数课时1(MIT Linear Algebra , Gilbert Strang)
这是Strang 教授的第一讲,引出线性代数的核心问题:求解线性方程组,在几何空间中直观的理解方程组的解表达的意义,理解在线性代数中求解方程组的核心思想:寻找系数矩阵A列向量的某个或某些线性组合,使得线性组合的结果向量等于b。两个核心的概念:线性方程组的行图像和列图像,其中列图像尤为重要。举例说明线性方程组航图像和列图像的概念:e.x. 有2个方程2个未知数的线性方程组:...原创 2018-09-20 11:17:01 · 764 阅读 · 0 评论 -
向量的基本概念 - 线性代数课时0(MIT Linear Algebra , Gilbert Strang)
本课不存在于MIT Linear Algebra 公开课视频中,是线性代数基础概念介绍,在Strang教授得《Introduction to linear algebra》第一章能找到相关内容。 向量的基本概念知识点:向量和线性组合(Vectors and Linear Combinations) 向量内积(点积 ·)和长度(Lengths and Dot Products)...原创 2018-09-19 10:40:38 · 989 阅读 · 0 评论 -
求n维空间中点到超平面的距离公式推导
问题:假设我们知道空间中的一个超平面S:,和中的一个点,(是n维列向量),如何求得到超平面S的距离? 首先给出距离公式: 推导(1): 首先,对于向量,我们知道。而在上的投影长度为。 对于超平面S,是超平面的法向量,我们在超平面上取一点,向量在上的投影长度就是到超平面的距离,根据上面的点积公式,有下面...原创 2019-03-29 13:33:52 · 667 阅读 · 0 评论