波动方程,拉梅常数和赫姆霍兹方程

以下内容主要整理自wiki,这是一个复杂的问题,很难一言以蔽之,根据个人情况,简单备忘如下。具体内容还是需要细学。

拉梅常数

之所以采用拉梅常数,因为有利于统一物理方程的表达形式。以下以均质各项同性弹性体为例,注意理解拉梅常数和常用的弹性参数之间的换算关系!


波动方程

标准波动方程

在线弹性理论,u为位移,c为介质中的波速,如剪切波波速c_{s}=\sqrt{\frac{G}{\rho}},压缩波波速 c_{p}=\sqrt{\frac{\lambda+2G}{\rho}}\lambda和G为拉梅常数,G为剪切模量,\rho是密度


赫姆霍兹方程(Helmholtz Equation

注:要求变量不同时随时间和空间变化!对于地震动而言,要求是稳态问题。


参考资料

(1)拉梅常数(百科);  Lamé parameters(wiki)

(2)波动方程(百科)Wave equation (wiki)

(3)波动方程(CSDN)

(4)Linear elasticity(wiki)

(5)豆艳萍,徐玉兰,汤忠飞.平面P波在自由界面上的反射[J].应用数学与计算数学学报,2011,25(01):80-89.(文章思路很清晰,值得学习!)

(6)Helmholzt Equation

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
由于题目中没有给出岩石的尺寸和形状,因此在求解过程中需要假设岩石为无限大的均匀介质。 首先,根据高斯光束的定义可以得到其强度分布函数: $$ I(x,y,z) = I_0 \exp \left[-\frac{2(x^2+y^2)}{w_0^2}\right] $$ 其中,$I_0$为光束中心的强度,$w_0$为光束半径。由于高斯光束在传播过程中会发生自聚焦,因此光束在岩石内部的强度分布函数也会发生改变。为了考虑这个因素,可以采用传输矩阵法计算光束在岩石内部的传播过程。具体来说,可以将岩石划分成若干个平行于x轴的薄层,每一层的厚度为$\Delta z$,在每一层中计算光束的传输矩阵$M$,然后逐层计算光束的强度分布函数。传输矩阵的计算公式为: $$ M = \begin{bmatrix} 1 & \Delta z \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{f}\Delta z & 1 \end{bmatrix} \begin{bmatrix} 1 & \Delta z \\ 0 & 1 \end{bmatrix} $$ 其中,$f$为光束的焦距。在计算传输矩阵时,可以采用近似公式: $$ M \approx \begin{bmatrix} 1-\frac{\Delta z}{f} & \Delta z \\ -\frac{1}{f}\Delta z & 1-\frac{\Delta z}{f} \end{bmatrix} $$ 接下来,可以根据光束的强度分布函数计算岩石中的吸收能量密度$Q$: $$ Q(x,y,z) = \eta I(x,y,z) $$ 其中,$\eta$为岩石的光吸收率。由于高斯光束的强度分布函数具有轴对称性,因此可以将岩石的吸收能量密度简化为一维问题: $$ q(x,z) = \int_{-\infty}^{+\infty} Q(x,y,z) dy = 2\eta I_0 e^{-\frac{2x^2}{w_0^2}} $$ 由于岩石是均匀介质,因此其热传导方程可以写为: $$ \frac{\partial T}{\partial t} = \frac{K}{\rho C} \nabla^2 T + \frac{Q}{\rho C} $$ 其中,$T$为岩石的温度,$\rho$为岩石的密度,$C$为岩石的比热容,$K$为岩石的热传导系数。由于岩石是无限大的均匀介质,因此可以将热传导方程简化为一维问题: $$ \frac{\partial T}{\partial t} = \frac{K}{\rho C} \frac{\partial^2 T}{\partial x^2} + \frac{q(x,t)}{\rho C} $$ 在数值求解过程中,可以采用有限差分法对上式进行离散化。将时间和空间分别离散为$t_n=n\Delta t$和$x_i=i\Delta x$,则上式可以写为: $$ \frac{T_{i,n+1}-T_{i,n}}{\Delta t} = \frac{K}{\rho C} \frac{T_{i+1,n}-2T_{i,n}+T_{i-1,n}}{\Delta x^2} + \frac{q_{i,n}}{\rho C} $$ 将上式变形,可以得到关于$T_{i,n+1}$的迭代公式: $$ T_{i,n+1} = T_{i,n} + \frac{K\Delta t}{\rho C\Delta x^2} (T_{i+1,n}-2T_{i,n}+T_{i-1,n}) + \frac{\Delta t}{\rho C} q_{i,n} $$ 上式中的$q_{i,n}$可以根据前面计算的吸收能量密度$q(x,z)$和传输矩阵$M$得到。具体来说,可以先计算光束在岩石中的传输矩阵$M(z)$,然后利用传输矩阵将光束的强度分布函数转化到每一层的位置上,最后计算吸收能量密度$q(x,z)$。 在求解温度场之后,可以根据热位移平衡方程求解应力场。热位移平衡方程可以写为: $$ \rho \frac{\partial^2 u}{\partial t^2} = \nabla \cdot \sigma $$ 其中,$u$为岩石的位移场,$\sigma$为应力张量。由于岩石的形变很小,因此可以采用线弹性理论来计算应力张量: $$ \sigma_{ij} = \lambda \delta_{ij} \epsilon_{kk} + 2\mu \epsilon_{ij} $$ 其中,$\lambda$和$\mu$为岩石的拉梅常数,$\delta_{ij}$为Kronecker delta符号,$\epsilon_{ij}$为应变张量。应变张量可以根据位移场求解得到: $$ \epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right) $$ 将上述公式代入热位移平衡方程,可以得到关于$u_{i,n+1}$的迭代公式: $$ u_{i,n+1} = 2u_{i,n} - u_{i,n-1} + \frac{\Delta t^2}{\rho} \left(\frac{\sigma_{i+1/2,n}-\sigma_{i-1/2,n}}{\Delta x}\right) $$ 其中,$\sigma_{i+1/2,n}$和$\sigma_{i-1/2,n}$可以根据前面计算的应变张量和岩石的材料参数求解得到。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值