Spark DAG 执行流程

Action 启动程序执行

  // Dataset.scala
  // scalastyle:off println
  def show(numRows: Int, truncate: Boolean): Unit = if (truncate) {
    println(showString(numRows, truncate = 20))
  } else {
    println(showString(numRows, truncate = 0))
  }

  private[sql] def showString(
      _numRows: Int, truncate: Int = 20, vertical: Boolean = false): String = {
    val numRows = _numRows.max(0).min(Int.MaxValue - 1)
    val newDf = toDF()
    val castCols = newDf.logicalPlan.output.map { col =>
      // Since binary types in top-level schema fields have a specific format to print,
      // so we do not cast them to strings here.
      if (col.dataType == BinaryType) {
        Column(col)
      } else {
        Column(col).cast(StringType)
      }
    }
    // 这里take(n) 就是head(n) 
    val takeResult = newDf.select(castCols: _*).take(numRows + 1)
    val hasMoreData = takeResult.length > numRows
    val data = takeResult.take(numRows)

    // For array values, replace Seq and Array with square brackets
    // For cells that are beyond `truncate` characters, replace it with the
    // first `truncate-3` and "..."
    val rows: Seq[Seq[String]] = schema.fieldNames.toSeq +: data.map { row =>
      row.toSeq.map { cell =>
        val str = cell match {
          case null => "null"
          case binary: Array[Byte] => binary.map("%02X".format(_)).mkString("[", " ", "]")
          case _ => cell.toString
        }
        if (truncate > 0 && str.length > truncate) {
          // do not show ellipses for strings shorter than 4 characters.
          if (truncate < 4) str.substring(0, truncate)
          else str.substring(0, truncate - 3) + "..."
        } else {
          str
        }
      }: Seq[String]
    }

  // head中执行 collectFromPlan
  def head(n: Int): Array[T] = withAction("head", limit(n).queryExecution)(collectFromPlan)

  // Dataset.scala
  /**
   * Collect all elements from a spark plan.
   */
  private def collectFromPlan(plan: SparkPlan): Array[T] = {
    // This projection writes output to a `InternalRow`, which means applying this projection is not
    // thread-safe. Here we create the projection inside this method to make `Dataset` thread-safe.
    // 任务开始的时候会有一个CodeGen, deserializer 是一个Expression(如 CreateExternalRow) 对象,这里会先将这个CodeGen为Java Code
    val objProj = GenerateSafeProjection.generate(deserializer :: Nil)
    // 这里的plan是 CollectLimitExec
    plan.executeCollect().map { row =>
      // The row returned by SafeProjection is `SpecificInternalRow`, which ignore the data type
      // parameter of its `get` method, so it's safe to use null here.
      objProj(row).get(0, null).asInstanceOf[T]
    }
  }

  // CollectLimitExec
  override def executeCollect(): Array[InternalRow] = child.executeTake(limit)

  // SparkPlan.scala 
  /**
   * Runs this query returning the first `n` rows as an array.
   *
   * This is modeled after `RDD.take` but never runs any job locally on the driver.
   */
  def executeTake(n: Int): Array[InternalRow] = {
    if (n == 0) {
      return new Array[InternalRow](0)
    }

    val childRDD = getByteArrayRdd(n).map(_._2)

    val buf = new ArrayBuffer[InternalRow]
    val totalParts = childRDD.partitions.length
    var partsScanned = 0
    while (buf.size < n && partsScanned < totalParts) {
      // The number of partitions to try in this iteration. It is ok for this number to be
      // greater than totalParts because we actually cap it at totalParts in runJob.
      var numPartsToTry = 1L
      if (partsScanned > 0) {
        // If we didn't find any rows after the previous iteration, quadruple and retry.
        // Otherwise, interpolate the number of partitions we need to try, but overestimate
        // it by 50%. We also cap the estimation in the end.
        val limitScaleUpFactor = Math.max(sqlContext.conf.limitScaleUpFactor, 2)
        if (buf.isEmpty) {
          numPartsToTry = partsScanned * limitScaleUpFactor
        } else {
          val left = n - buf.size
          // As left > 0, numPartsToTry is always >= 1
          numPartsToTry = Math.ceil(1.5 * left * partsScanned / buf.size).toInt
          numPartsToTry = Math.min(numPartsToTry, partsScanned * limitScaleUpFactor)
        }
      }

      val p = partsScanned.until(math.min(partsScanned + numPartsToTry, totalParts).toInt)
      val sc = sqlContext.sparkContext
      // 当前plan是一个subplan,sc将childRDD 通过函数调用进入 DAGScheduler.runJob() 方法
      val res = sc.runJob(childRDD,
        (it: Iterator[Array[Byte]]) => if (it.hasNext) it.next() else Array.empty[Byte], p)

      buf ++= res.flatMap(decodeUnsafeRows)

      partsScanned += p.size
    }

    if (buf.size > n) {
      buf.take(n).toArray
    } else {
      buf.toArray
    }
  }

DAGScheduler.scala 提交Job 执行

  def runJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): Unit = {
    val start = System.nanoTime
    val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)
    ThreadUtils.awaitReady(waiter.completionFuture, Duration.Inf)
    waiter.completionFuture.value.get match {
      case scala.util.Success(_) =>
        logInfo("Job %d finished: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
      case scala.util.Failure(exception) =>
        logInfo("Job %d failed: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
        // SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler.
        val callerStackTrace = Thread.currentThread().getStackTrace.tail
        exception.setStackTrace(exception.getStackTrace ++ callerStackTrace)
        throw exception
    }
  }

  def submitJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): JobWaiter[U] = {
    // Check to make sure we are not launching a task on a partition that does not exist.
    val maxPartitions = rdd.partitions.length
    partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
      throw new IllegalArgumentException(
        "Attempting to access a non-existent partition: " + p + ". " +
          "Total number of partitions: " + maxPartitions)
    }

    val jobId = nextJobId.getAndIncrement()
    if (partitions.size == 0) {
      // Return immediately if the job is running 0 tasks
      return new JobWaiter[U](this, jobId, 0, resultHandler)
    }

    assert(partitions.size > 0)
    val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
    val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
    eventProcessLoop.post(JobSubmitted(
      jobId, rdd, func2, partitions.toArray, callSite, waiter,
      SerializationUtils.clone(properties)))
    waiter
  }

  // 通过eventBus处理JobSubmitted 事件,还是来到 DAGScheduler.handleJobSubmitted中
  // 这里createResultStage 作为finalStage,并提交
  private[scheduler] def handleJobSubmitted(jobId: Int,
      finalRDD: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      callSite: CallSite,
      listener: JobListener,
      properties: Properties) {
    var finalStage: ResultStage = null
    try {
      // New stage creation may throw an exception if, for example, jobs are run on a
      // HadoopRDD whose underlying HDFS files have been deleted.
      finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
    } catch {
      case e: Exception =>
        logWarning("Creating new stage failed due to exception - job: " + jobId, e)
        listener.jobFailed(e)
        return
    }

    val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
    clearCacheLocs()
    logInfo("Got job %s (%s) with %d output partitions".format(
      job.jobId, callSite.shortForm, partitions.length))
    logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
    logInfo("Parents of final stage: " + finalStage.parents)
    logInfo("Missing parents: " + getMissingParentStages(finalStage))

    val jobSubmissionTime = clock.getTimeMillis()
    jobIdToActiveJob(jobId) = job
    activeJobs += job
    finalStage.setActiveJob(job)
    val stageIds = jobIdToStageIds(jobId).toArray
    val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
    listenerBus.post(
      SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
    submitStage(finalStage)
  }

根据Job创建Stage DAG图

  // Stage的划分和创建,在创建ResultStage的时候就已经通过下面这几个方法把父stage创建出来了
  // createResultStage - getOrCreateParentStages - getShuffleDependencies - getOrCreateShuffleMapStage 
  // 
  // 这个过程中,shuffleIdToMapStage 这个变量应该会被update 掉
  // rdd.dependencies 这个会保存父 shuffle的shuffleId
  // shuffleIdToMapStage 这里会缓存 shuffleId 对应的Stage,虽然RDD 可能不会变化,但是rdd对应的Stage会更新
  /**
   * Create a ResultStage associated with the provided jobId.
   */
  private def createResultStage(
      rdd: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      jobId: Int,
      callSite: CallSite): ResultStage = {
    val parents = getOrCreateParentStages(rdd, jobId)
    val id = nextStageId.getAndIncrement()
    val stage = new ResultStage(id, rdd, func, partitions, parents, jobId, callSite)
    stageIdToStage(id) = stage
    updateJobIdStageIdMaps(jobId, stage)
    stage
  }

  /**
   * Get or create the list of parent stages for a given RDD.  The new Stages will be created with
   * the provided firstJobId.
   */
  private def getOrCreateParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = {
    getShuffleDependencies(rdd).map { shuffleDep =>
      getOrCreateShuffleMapStage(shuffleDep, firstJobId)
    }.toList
  }

  /**
   * Returns shuffle dependencies that are immediate parents of the given RDD.
   *
   * This function will not return more distant ancestors.  For example, if C has a shuffle
   * dependency on B which has a shuffle dependency on A:
   *
   * A <-- B <-- C
   *
   * calling this function with rdd C will only return the B <-- C dependency.
   *
   * This function is scheduler-visible for the purpose of unit testing.
   */
  private[scheduler] def getShuffleDependencies(
      rdd: RDD[_]): HashSet[ShuffleDependency[_, _, _]] = {
    val parents = new HashSet[ShuffleDependency[_, _, _]]
    val visited = new HashSet[RDD[_]]
    val waitingForVisit = new ArrayStack[RDD[_]]
    waitingForVisit.push(rdd)
    while (waitingForVisit.nonEmpty) {
      val toVisit = waitingForVisit.pop()
      if (!visited(toVisit)) {
        visited += toVisit
        toVisit.dependencies.foreach {
          case shuffleDep: ShuffleDependency[_, _, _] =>
            parents += shuffleDep
          case dependency =>
            waitingForVisit.push(dependency.rdd)
        }
      }
    }
    parents
  }

  /**
   * Gets a shuffle map stage if one exists in shuffleIdToMapStage. Otherwise, if the
   * shuffle map stage doesn't already exist, this method will create the shuffle map stage in
   * addition to any missing ancestor shuffle map stages.
   */
  private def getOrCreateShuffleMapStage(
      shuffleDep: ShuffleDependency[_, _, _],
      firstJobId: Int): ShuffleMapStage = {
    shuffleIdToMapStage.get(shuffleDep.shuffleId) match {
      case Some(stage) =>
        stage

      case None =>
        // Create stages for all missing ancestor shuffle dependencies.
        getMissingAncestorShuffleDependencies(shuffleDep.rdd).foreach { dep =>
          // Even though getMissingAncestorShuffleDependencies only returns shuffle dependencies
          // that were not already in shuffleIdToMapStage, it's possible that by the time we
          // get to a particular dependency in the foreach loop, it's been added to
          // shuffleIdToMapStage by the stage creation process for an earlier dependency. See
          // SPARK-13902 for more information.
          if (!shuffleIdToMapStage.contains(dep.shuffleId)) {
            createShuffleMapStage(dep, firstJobId)
          }
        }
        // Finally, create a stage for the given shuffle dependency.
        createShuffleMapStage(shuffleDep, firstJobId)
    }
  }

  
  /** Submits stage, but first recursively submits any missing parents. */
  private def submitStage(stage: Stage) {
    val jobId = activeJobForStage(stage)
    if (jobId.isDefined) {
      logDebug("submitStage(" + stage + ")")
      if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
        val missing = getMissingParentStages(stage).sortBy(_.id)
        logDebug("missing: " + missing)
        if (missing.isEmpty) {
          logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
          // 提交当前stage的所有task去执行
          submitMissingTasks(stage, jobId.get)
        } else {
          for (parent <- missing) {
            // 将所有的父stage提交,并执行
            submitStage(parent)
          }
          waitingStages += stage
        }
      }
    } else {
      abortStage(stage, "No active job for stage " + stage.id, None)
    }
  }

  // DAG 划分的核心
  private def getMissingParentStages(stage: Stage): List[Stage] = {
    val missing = new HashSet[Stage]
    val visited = new HashSet[RDD[_]]
    // We are manually maintaining a stack here to prevent StackOverflowError
    // caused by recursively visiting
    val waitingForVisit = new ArrayStack[RDD[_]]
    def visit(rdd: RDD[_]) {
      if (!visited(rdd)) {
        visited += rdd
        // x.3 在计算stage之前,还是要判断rdd的所有partitions是否已经都缓存,如果都已缓存,可以直接读取
        val rddHasUncachedPartitions = getCacheLocs(rdd).contains(Nil)
        if (rddHasUncachedPartitions) {
          for (dep <- rdd.dependencies) {
            dep match {
              // x.2 遍历所有父rdd,如果时宽依赖,创建一个新的stage,这里会依次递增生成新的 Stage Id
              case shufDep: ShuffleDependency[_, _, _] =>
                val mapStage = getOrCreateShuffleMapStage(shufDep, stage.firstJobId)
                // 根据ShuffleId获取到的Stage 可能会被更新,但是如果Stage中的RDD对应的数据已经被缓存,也不会被重复提交执行
                if (!mapStage.isAvailable) {
                  missing += mapStage
                }
              // 如果是窄依赖,入栈,等待继续遍历其父rdd
              case narrowDep: NarrowDependency[_] =>
                waitingForVisit.push(narrowDep.rdd)
            }
          }
        }
      }
    }
    // x.1 lineage中最后一个rdd入栈
    waitingForVisit.push(stage.rdd)
    while (waitingForVisit.nonEmpty) {
      visit(waitingForVisit.pop())
    }
    missing.toList
  }

    /** Called when stage's parents are available and we can now do its task. */
  private def submitMissingTasks(stage: Stage, jobId: Int) {
    logDebug("submitMissingTasks(" + stage + ")")

    // First figure out the indexes of partition ids to compute.
    val partitionsToCompute: Seq[Int] = stage.findMissingPartitions()

    // Use the scheduling pool, job group, description, etc. from an ActiveJob associated
    // with this Stage
    val properties = jobIdToActiveJob(jobId).properties

    runningStages += stage
    // SparkListenerStageSubmitted should be posted before testing whether tasks are
    // serializable. If tasks are not serializable, a SparkListenerStageCompleted event
    // will be posted, which should always come after a corresponding SparkListenerStageSubmitted
    // event.
    stage match {
      case s: ShuffleMapStage =>
        outputCommitCoordinator.stageStart(stage = s.id, maxPartitionId = s.numPartitions - 1)
      case s: ResultStage =>
        outputCommitCoordinator.stageStart(
          stage = s.id, maxPartitionId = s.rdd.partitions.length - 1)
    }
    val taskIdToLocations: Map[Int, Seq[TaskLocation]] = try {
      stage match {
        case s: ShuffleMapStage =>
          partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap
        case s: ResultStage =>
          partitionsToCompute.map { id =>
            val p = s.partitions(id)
            (id, getPreferredLocs(stage.rdd, p))
          }.toMap
      }
    } catch {
      case NonFatal(e) =>
        stage.makeNewStageAttempt(partitionsToCompute.size)
        listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))
        abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
        runningStages -= stage
        return
    }

    stage.makeNewStageAttempt(partitionsToCompute.size, taskIdToLocations.values.toSeq)

    // If there are tasks to execute, record the submission time of the stage. Otherwise,
    // post the even without the submission time, which indicates that this stage was
    // skipped.
    if (partitionsToCompute.nonEmpty) {
      stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
    }
    listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))

    // TODO: Maybe we can keep the taskBinary in Stage to avoid serializing it multiple times.
    // Broadcasted binary for the task, used to dispatch tasks to executors. Note that we broadcast
    // the serialized copy of the RDD and for each task we will deserialize it, which means each
    // task gets a different copy of the RDD. This provides stronger isolation between tasks that
    // might modify state of objects referenced in their closures. This is necessary in Hadoop
    // where the JobConf/Configuration object is not thread-safe.
    var taskBinary: Broadcast[Array[Byte]] = null
    var partitions: Array[Partition] = null
    try {
      // For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep).
      // For ResultTask, serialize and broadcast (rdd, func).
      var taskBinaryBytes: Array[Byte] = null
      // taskBinaryBytes and partitions are both effected by the checkpoint status. We need
      // this synchronization in case another concurrent job is checkpointing this RDD, so we get a
      // consistent view of both variables.
      RDDCheckpointData.synchronized {
        taskBinaryBytes = stage match {
          case stage: ShuffleMapStage =>
            JavaUtils.bufferToArray(
              closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef))
          case stage: ResultStage =>
            JavaUtils.bufferToArray(closureSerializer.serialize((stage.rdd, stage.func): AnyRef))
        }

        partitions = stage.rdd.partitions
      }

      taskBinary = sc.broadcast(taskBinaryBytes)
    } catch {
      // In the case of a failure during serialization, abort the stage.
      case e: NotSerializableException =>
        abortStage(stage, "Task not serializable: " + e.toString, Some(e))
        runningStages -= stage

        // Abort execution
        return
      case NonFatal(e) =>
        abortStage(stage, s"Task serialization failed: $e\n${Utils.exceptionString(e)}", Some(e))
        runningStages -= stage
        return
    }

    val tasks: Seq[Task[_]] = try {
      val serializedTaskMetrics = closureSerializer.serialize(stage.latestInfo.taskMetrics).array()
      stage match {
        case stage: ShuffleMapStage =>
          stage.pendingPartitions.clear()
          partitionsToCompute.map { id =>
            val locs = taskIdToLocations(id)
            val part = partitions(id)
            stage.pendingPartitions += id
            new ShuffleMapTask(stage.id, stage.latestInfo.attemptNumber,
              taskBinary, part, locs, properties, serializedTaskMetrics, Option(jobId),
              Option(sc.applicationId), sc.applicationAttemptId)
          }

        case stage: ResultStage =>
          partitionsToCompute.map { id =>
            val p: Int = stage.partitions(id)
            val part = partitions(p)
            val locs = taskIdToLocations(id)
            new ResultTask(stage.id, stage.latestInfo.attemptNumber,
              taskBinary, part, locs, id, properties, serializedTaskMetrics,
              Option(jobId), Option(sc.applicationId), sc.applicationAttemptId)
          }
      }
    } catch {
      case NonFatal(e) =>
        abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
        runningStages -= stage
        return
    }

    if (tasks.size > 0) {
      logInfo(s"Submitting ${tasks.size} missing tasks from $stage (${stage.rdd}) (first 15 " +
        s"tasks are for partitions ${tasks.take(15).map(_.partitionId)})")
      taskScheduler.submitTasks(new TaskSet(
        tasks.toArray, stage.id, stage.latestInfo.attemptNumber, jobId, properties))
    } else {
      // Because we posted SparkListenerStageSubmitted earlier, we should mark
      // the stage as completed here in case there are no tasks to run
      markStageAsFinished(stage, None)

      stage match {
        case stage: ShuffleMapStage =>
          logDebug(s"Stage ${stage} is actually done; " +
              s"(available: ${stage.isAvailable}," +
              s"available outputs: ${stage.numAvailableOutputs}," +
              s"partitions: ${stage.numPartitions})")
          markMapStageJobsAsFinished(stage)
        case stage : ResultStage =>
          logDebug(s"Stage ${stage} is actually done; (partitions: ${stage.numPartitions})")
      }
      submitWaitingChildStages(stage)
    }
  }

  // Stage 运行完毕,重复提交正在等待执行的stages
  /**
   * Check for waiting stages which are now eligible for resubmission.
   * Submits stages that depend on the given parent stage. Called when the parent stage completes
   * successfully.
   */
  private def submitWaitingChildStages(parent: Stage) {
    logTrace(s"Checking if any dependencies of $parent are now runnable")
    logTrace("running: " + runningStages)
    logTrace("waiting: " + waitingStages)
    logTrace("failed: " + failedStages)
    val childStages = waitingStages.filter(_.parents.contains(parent)).toArray
    waitingStages --= childStages
    for (stage <- childStages.sortBy(_.firstJobId)) {
      submitStage(stage)
    }
  }

Stage执行结束

  // Stage执行结束
  /**
   * Marks a stage as finished and removes it from the list of running stages.
   */
  private def markStageAsFinished(
      stage: Stage,
      errorMessage: Option[String] = None,
      willRetry: Boolean = false): Unit = {
    val serviceTime = stage.latestInfo.submissionTime match {
      case Some(t) => "%.03f".format((clock.getTimeMillis() - t) / 1000.0)
      case _ => "Unknown"
    }
    if (errorMessage.isEmpty) {
      logInfo("%s (%s) finished in %s s".format(stage, stage.name, serviceTime))
      stage.latestInfo.completionTime = Some(clock.getTimeMillis())

      // Clear failure count for this stage, now that it's succeeded.
      // We only limit consecutive failures of stage attempts,so that if a stage is
      // re-used many times in a long-running job, unrelated failures don't eventually cause the
      // stage to be aborted.
      stage.clearFailures()
    } else {
      stage.latestInfo.stageFailed(errorMessage.get)
      logInfo(s"$stage (${stage.name}) failed in $serviceTime s due to ${errorMessage.get}")
    }

    if (!willRetry) {
      outputCommitCoordinator.stageEnd(stage.id)
    }
    listenerBus.post(SparkListenerStageCompleted(stage.latestInfo))
    runningStages -= stage
  }

  // 
  override def onStageCompleted(stageCompleted: SparkListenerStageCompleted): Unit = {
      val stageId = stageCompleted.stageInfo.stageId
      allocationManager.synchronized {
        stageIdToNumTasks -= stageId
        stageIdToNumRunningTask -= stageId
        stageIdToNumSpeculativeTasks -= stageId
        stageIdToTaskIndices -= stageId
        stageIdToSpeculativeTaskIndices -= stageId
        stageIdToExecutorPlacementHints -= stageId

        // Update the executor placement hints
        updateExecutorPlacementHints()

        // If this is the last stage with pending tasks, mark the scheduler queue as empty
        // This is needed in case the stage is aborted for any reason
        if (stageIdToNumTasks.isEmpty && stageIdToNumSpeculativeTasks.isEmpty) {
          allocationManager.onSchedulerQueueEmpty()
        }
      }
    }

Task 的调度和执行

  // 接 TaskSchedulerImpl.submitTasks(taskSet: TaskSet) 中 backend.reviveOffers()

  // CoarseGrainedSchedulerBackend.scala
  override def reviveOffers() {
    driverEndpoint.send(ReviveOffers)
  }

    // CoarseGrainedSchedulerBackend 在接收到 RegisterExecutor 和 ReviveOffers 时,会进行任务调度

    // CoarseGrainedSchedulerBackend.scala
    // Make fake resource offers on all executors
    private def makeOffers() {
      // Make sure no executor is killed while some task is launching on it
      val taskDescs = CoarseGrainedSchedulerBackend.this.synchronized {
        // Filter out executors under killing
        val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
        val workOffers = activeExecutors.map {
          case (id, executorData) =>
            new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
        }.toIndexedSeq
        scheduler.resourceOffers(workOffers)
      }
      if (!taskDescs.isEmpty) {
        launchTasks(taskDescs)
      }
    }
  
  // TaskSchedulerImpl.scala
  /**
   * Called by cluster manager to offer resources on slaves. We respond by asking our active task
   * sets for tasks in order of priority. We fill each node with tasks in a round-robin manner so
   * that tasks are balanced across the cluster.
   */
  def resourceOffers(offers: IndexedSeq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
    // Mark each slave as alive and remember its hostname
    // Also track if new executor is added
    var newExecAvail = false
    for (o <- offers) {
      if (!hostToExecutors.contains(o.host)) {
        hostToExecutors(o.host) = new HashSet[String]()
      }
      if (!executorIdToRunningTaskIds.contains(o.executorId)) {
        hostToExecutors(o.host) += o.executorId
        executorAdded(o.executorId, o.host)
        executorIdToHost(o.executorId) = o.host
        executorIdToRunningTaskIds(o.executorId) = HashSet[Long]()
        newExecAvail = true
      }
      for (rack <- getRackForHost(o.host)) {
        hostsByRack.getOrElseUpdate(rack, new HashSet[String]()) += o.host
      }
    }

    // Before making any offers, remove any nodes from the blacklist whose blacklist has expired. Do
    // this here to avoid a separate thread and added synchronization overhead, and also because
    // updating the blacklist is only relevant when task offers are being made.
    blacklistTrackerOpt.foreach(_.applyBlacklistTimeout())

    val filteredOffers = blacklistTrackerOpt.map { blacklistTracker =>
      offers.filter { offer =>
        !blacklistTracker.isNodeBlacklisted(offer.host) &&
          !blacklistTracker.isExecutorBlacklisted(offer.executorId)
      }
    }.getOrElse(offers)

    val shuffledOffers = shuffleOffers(filteredOffers)
    // Build a list of tasks to assign to each worker.
    val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores / CPUS_PER_TASK))
    val availableCpus = shuffledOffers.map(o => o.cores).toArray
    val sortedTaskSets = rootPool.getSortedTaskSetQueue
    for (taskSet <- sortedTaskSets) {
      logDebug("parentName: %s, name: %s, runningTasks: %s".format(
        taskSet.parent.name, taskSet.name, taskSet.runningTasks))
      if (newExecAvail) {
        taskSet.executorAdded()
      }
    }

    // Take each TaskSet in our scheduling order, and then offer it each node in increasing order
    // of locality levels so that it gets a chance to launch local tasks on all of them.
    // NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
    for (taskSet <- sortedTaskSets) {
      var launchedAnyTask = false
      var launchedTaskAtCurrentMaxLocality = false
      for (currentMaxLocality <- taskSet.myLocalityLevels) {
        do {
          launchedTaskAtCurrentMaxLocality = resourceOfferSingleTaskSet(
            taskSet, currentMaxLocality, shuffledOffers, availableCpus, tasks)
          launchedAnyTask |= launchedTaskAtCurrentMaxLocality
        } while (launchedTaskAtCurrentMaxLocality)
      }
      if (!launchedAnyTask) {
        taskSet.abortIfCompletelyBlacklisted(hostToExecutors)
      }
    }

    if (tasks.size > 0) {
      hasLaunchedTask = true
    }
    return tasks
  }

  // TaskSetManager.scala 收到资源,并开始执行任务
  /**
   * Respond to an offer of a single executor from the scheduler by finding a task
   *
   * NOTE: this function is either called with a maxLocality which
   * would be adjusted by delay scheduling algorithm or it will be with a special
   * NO_PREF locality which will be not modified
   *
   * @param execId the executor Id of the offered resource
   * @param host  the host Id of the offered resource
   * @param maxLocality the maximum locality we want to schedule the tasks at
   */
  @throws[TaskNotSerializableException]
  def resourceOffer(
      execId: String,
      host: String,
      maxLocality: TaskLocality.TaskLocality)
    : Option[TaskDescription] =
  {
    val offerBlacklisted = taskSetBlacklistHelperOpt.exists { blacklist =>
      blacklist.isNodeBlacklistedForTaskSet(host) ||
        blacklist.isExecutorBlacklistedForTaskSet(execId)
    }
    if (!isZombie && !offerBlacklisted) {
      val curTime = clock.getTimeMillis()

      var allowedLocality = maxLocality

      if (maxLocality != TaskLocality.NO_PREF) {
        allowedLocality = getAllowedLocalityLevel(curTime)
        if (allowedLocality > maxLocality) {
          // We're not allowed to search for farther-away tasks
          allowedLocality = maxLocality
        }
      }

      dequeueTask(execId, host, allowedLocality).map { case ((index, taskLocality, speculative)) =>
        // Found a task; do some bookkeeping and return a task description
        val task = tasks(index)
        val taskId = sched.newTaskId()
        // Do various bookkeeping
        copiesRunning(index) += 1
        val attemptNum = taskAttempts(index).size
        val info = new TaskInfo(taskId, index, attemptNum, curTime,
          execId, host, taskLocality, speculative)
        taskInfos(taskId) = info
        taskAttempts(index) = info :: taskAttempts(index)
        // Update our locality level for delay scheduling
        // NO_PREF will not affect the variables related to delay scheduling
        if (maxLocality != TaskLocality.NO_PREF) {
          currentLocalityIndex = getLocalityIndex(taskLocality)
          lastLaunchTime = curTime
        }
        // Serialize and return the task
        val serializedTask: ByteBuffer = try {
          ser.serialize(task)
        } catch {
          // If the task cannot be serialized, then there's no point to re-attempt the task,
          // as it will always fail. So just abort the whole task-set.
          case NonFatal(e) =>
            val msg = s"Failed to serialize task $taskId, not attempting to retry it."
            logError(msg, e)
            abort(s"$msg Exception during serialization: $e")
            throw new TaskNotSerializableException(e)
        }
        if (serializedTask.limit() > TaskSetManager.TASK_SIZE_TO_WARN_KB * 1024 &&
          !emittedTaskSizeWarning) {
          emittedTaskSizeWarning = true
          logWarning(s"Stage ${task.stageId} contains a task of very large size " +
            s"(${serializedTask.limit() / 1024} KB). The maximum recommended task size is " +
            s"${TaskSetManager.TASK_SIZE_TO_WARN_KB} KB.")
        }
        addRunningTask(taskId)

        // We used to log the time it takes to serialize the task, but task size is already
        // a good proxy to task serialization time.
        // val timeTaken = clock.getTime() - startTime
        val taskName = s"task ${info.id} in stage ${taskSet.id}"
        logInfo(s"Starting $taskName (TID $taskId, $host, executor ${info.executorId}, " +
          s"partition ${task.partitionId}, $taskLocality, ${serializedTask.limit()} bytes)")

        sched.dagScheduler.taskStarted(task, info)
        new TaskDescription(
          taskId,
          attemptNum,
          execId,
          taskName,
          index,
          addedFiles,
          addedJars,
          task.localProperties,
          serializedTask)
      }
    } else {
      None
    }
  }

  /**
   * Called by the TaskSetManager to report task's starting.
   */
  def taskStarted(task: Task[_], taskInfo: TaskInfo) {
    eventProcessLoop.post(BeginEvent(task, taskInfo))
  }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值