文章来源:国土卫星遥感应用中心微信公众号
风能作为一种清洁能源,是我国实现碳达峰、碳中和目标的重要支撑。随着风力发电行业的快速发展,基于遥感图像快速获取风力发电设施(风机)的数量、掌握空间分布对电力行业和有关监管部门具有重要意义。传统遥感目标识别的算法由于对风机影像特征表达不足,无法满足大区域风机提取的要求。实验室研究人员提出了一种联合深度学习目标检测与目标分类的风机提取方法,在Faster RCNN对风机目标识别的基础上,利用RestNet网络实现二次分类,风机目标提取准确度达97.5%。基于此模型完成了全国范围风力发电设施提取。
1. 遥感风力发电设施训练样本采集
在遥感影像上风机目标属于小目标,特征信息的缺少是导致风机自动提取精度低的主要原因,加入阴影特征可有效克服这一缺点(图1C)。遥感影像和风机目标矢量并不能直接用于模型训练,需要转换切片为训练样本标签,由于切片会破坏目标的完整性,因而在样本生成过程中还需要结合地理空间分析对样本范围内的目标进行完整性判断,过滤在样本中的无效目标,最终形成有效训练样本集。
图1 风机样本标注
2. 深度学习风力发电设施提取模型设计
小目标的特征会随着深度神经网络的层数增加而逐渐消失,因此采用较少层数的特征提取骨干网络;同时由于特征深度的不够,会导致大区域范围内复杂遥感背景中无法正确区分干扰目标与真实目标。基于此,实验室研究人员提出一种深度学习目标检测与目标判