一文掌握Dijkstra算法
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。
基本思想
- 通过
Dijkstra
计算图G
中的最短路径时,需要指定起点s
(即从顶点s
开始计算)。 - 此外,引进两个集合
S
和U
。S
的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U
则是记录还未求出最短路径的顶点(以及该顶点到起点s
的距离)。 - 初始时,
S
中只有起点s
;U
中是除s
之外的顶点,并且U
中顶点的路径是”起点s到该顶点的路径”。然后,从U
中找出路径最短的顶点,并将其加入到S
中;接着,更新U
中的顶点和顶点对应的路径。 然后,再从U
中找出路径最短的顶点,并将其加入到S
中;接着,更新U
中的顶点和顶点对应的路径。 … 重复该操作,直到遍历完所有顶点。
操作步骤
- 初始时,
S
只包含起点s
;U
包含除s
外的其他顶点,且U
中顶点的距离为”起点s
到该顶点的距离”,例如,U
中顶点v的距离为(s,v)
的长度,然后s
和v
不相邻,则v
的距离为∞
。 - 从
U
中选出”距离最短的顶点k
”,并将顶点k加入到S
中;同时,从U
中移除顶点k
。 - 更新
U
中各个顶点到起点s
的距离。之所以更新U
中顶点的距离,是由于上一步中确定了k
是求出最短路径的顶点,从而可以利用k
来更新其它顶点的距离;例如,(s,v)
的距离可能大于(s,k)+(k,v)
的距离。 - 重复步骤
(2)
和(3)
,直到遍历完所有顶点。
单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。
核心代码
/**
* @param edges 传入的边
* @param s 起始顶点
* @param n
* @return
*/
public int[] dijkstra(int[][] edges, int s, int n) {
Map<Integer, List<int[]>> graph = new HashMap<>();
for (int[] edge : edges)
graph.computeIfAbsent(edge[0], e -> new ArrayList<>()).add(new int[]{edge[1], edge[2]});
int[] dis = new int[n];
Arrays.fill(dis, Integer.MAX_VALUE);
boolean[] vis = new boolean[n];
dis[s] = 0;
PriorityQueue<Integer> pq = new PriorityQueue<>(((o1, o2) -> dis[o1] - dis[o2]));
pq.offer(s);
while (!pq.isEmpty()) {
int curr = pq.poll();
if (vis[curr]) continue;
vis[curr] = true;
List<int[]> nexts = graph.getOrDefault(curr, new ArrayList<>());
for (int[] next : nexts) {
int to = next[0];
int weigh = next[1];
if (vis[to]) continue;
if (dis[to] > dis[curr] + weigh) {
dis[to] = dis[curr] + weigh;
}
pq.offer(to);
}
}
return dis;
}
测试
private void testOne() {
int n = 6;//顶点数量
int s = 0;//起点的下标索引
int e = 8;//边的数量
int[][] edges = new int[e][3];
edges[0] = new int[]{0, 2, 10};
edges[1] = new int[]{0, 4, 30};
edges[2] = new int[]{0, 5, 100};
edges[3] = new int[]{1, 2, 5};
edges[4] = new int[]{2, 3, 50};
edges[5] = new int[]{3, 5, 10};
edges[6] = new int[]{4, 3, 20};
edges[7] = new int[]{4, 5, 60};
// System.out.println(JSON.toJSONString(edges));
dijkstra(edges, s, n);
}
Reference
- https://blog.csdn.net/heroacool/article/details/51014824