16、基于组织电特性的癌症检测与人工智能辅助视频游戏检测轻度认知障碍

基于组织电特性的癌症检测与人工智能辅助视频游戏检测轻度认知障碍

在医学研究领域,癌症检测和轻度认知障碍检测一直是备受关注的重要课题。近年来,基于组织电特性的癌症检测方法以及利用人工智能辅助视频游戏进行轻度认知障碍检测的研究取得了显著进展。

基于组织电特性的癌症检测
  • 研究方法分类 :根据所选文章的研究方法,可将其分为四类。第一类是模拟法,即利用算法、建模程序或模拟现象所需的条件(如文章5、11、12等);第二类是离体法,指通过医疗程序从活体中提取器官、细胞或组织样本以获取数据(如文章2、3、7等);第三类是在体实验法,通常在小鼠或猪等活体生物体内进行实验(如文章1、18、29)。
    |类别|方法|涉及文章|
    | ---- | ---- | ---- |
    |第一类|模拟法|5、11、12、13、14、15、19、27|
    |第二类|离体法|2、3、7、10、16、17、20、21、22、23、24、26、30|
    |第三类|在体实验法|1、18、29|

  • 介电特性与癌症检测 :多项研究表明,介电参数(如电导率和介电常数)可作为癌症患者致密化的生物标志物。健康组织和肿瘤组织的介电常数对比有助于对它们进行分类,可作为早期检测异常组织的生物标志物。介电谱能够提供正常和癌组织的生物物理状态,可有效应用于早期诊断。例如,Fahmy等人的研究指出,介电谱特征可用于癌症诊断。

  • 生物阻抗与癌症检测 :生物阻抗描述了生物体在施加外部电流时的响应,可用于组织表征和成分评估。基于癌症组织和健康组织阻抗值的差异,许多作者认为生物阻抗可用于乳腺癌、宫颈癌、前列腺癌等的早期检测。如Teixeira等人对健康和癌性小鼠组织的研究表明,癌症组织的阻抗值较低。不同研究在这一结论上达成一致,但各自也有独特的发现和技术。例如,Denkçeken和Ay¸segül使用光纤生物阻抗光谱系统研究乳腺上皮细胞,发现转移性癌细胞的阻抗值降低;Mansouri等人比较左右乳房的电阻,认为电阻差异是早期检测癌症的重要参数;Du等人则提出生物阻抗光谱可在几分钟内区分良性肿瘤和癌症。
  • 微波技术与癌症检测 :研究微波技术的方法有多种,如在模拟的幻影组织中使用油 - 明胶分散体,或研究不同癌症阶段细胞的含水量。多项研究表明,介电特性(如介电常数和电导率)在乳腺癌检测中至关重要,微波表征是检测乳腺癌细胞的可靠方法。
人工智能辅助视频游戏检测轻度认知障碍
  • 研究背景 :轻度认知障碍(MCI)是痴呆的第一阶段,由生物、心理和环境变量引起,可通过非侵入性过程进行监测。随着临床病例的增加,研究的主要目标之一是确定认知障碍的触发因素及其负面影响,发现患者年龄是不同类型痴呆发展的主要风险因素。计算机辅助系统有望成为诊断和预防痴呆疾病的新技术。
  • 主要贡献 :此前已有一些相关研究做出了重要贡献。例如,Neuro - Racer技术通过视频游戏增强老年人的认知控制能力,可改善注意力和工作记忆,还能用于治疗老年人的注意力缺陷、抑郁症和痴呆症;Episodix视频游戏可检测老年人的认知障碍,通过4种基于参与者认知状态的性能指标进行心理测量有效性研究,并使用机器学习算法对患者进行分类;虚拟现实(VR)可用于治疗心理健康问题,如焦虑、抑郁、精神分裂症等,能缓解传统研究的一些方法学限制。
  • 本研究贡献 :本研究基于“蒙特利尔认知评估”(MoCa)和“简易精神状态检查表”(MMSE)标准化医学测试,开发了一款基于任务的视频游戏,用于检测轻度认知障碍。通过对45名处于生产年龄组的不同性别样本进行测试,评估执行和情景记忆,包括空间定向、物体识别、数值计算和多任务技能等。人工智能(AI)作为代理玩家,用于确定每个任务的时间阈值,代表不同年龄组玩家应达到的表现时间。结果表明,女性在总体任务上花费的时间比AI算法长;从35岁开始,随着年龄的增长,注意力和执行记忆任务的障碍逐渐增加;在数值计算问题上,女性的错误率比男性高出80%。
  • 研究方法

    • 抽样描述 :研究样本为41名年龄在24 - 50岁之间的生产年龄组人员,其中女性27人(65.85%),男性14人(34.14%)。按年龄范围分类为:24 - 30岁(26.83%)、31 - 35岁(29.26%)、36 - 40岁(12.2%)、41 - 45岁(14.63%)和46 - 50岁(21.95%)。所有参与者均来自厄瓜多尔瓜亚基尔市,为私立大学的行政和学术人员。通过MoCa和MMSE测试评估轻度认知障碍。
      mermaid graph LR classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px; A(抽样样本):::process --> B(女性27人,65.85%):::process A --> C(男性14人,34.14%):::process B --> D(24 - 30岁,26.83%):::process B --> E(31 - 35岁,29.26%):::process B --> F(36 - 40岁,12.2%):::process B --> G(41 - 45岁,14.63%):::process B --> H(46 - 50岁,21.95%):::process C --> D C --> E C --> F C --> G C --> H
    • 策略:Neurocity视频游戏 :该游戏基于城市环境设计,玩家使用第一人称射击(FPS)视角。游戏任务旨在评估玩家的抽象和理解能力,通过完成任务的时间来评估相关能力。具体任务包括:
      • 空间定向 :在3D视角下探索数字城市,根据箭头指示找到停放车辆的位置,识别和适应环境的时间(α)是激活第一个任务的重要测量指标。
      • 物体识别 :玩家需要回答启动车辆并在城市中行驶所需的物品(钥匙和驾照),识别物体并返回车辆的时间称为β。
      • 元素关联 :将物体识别和数值计算相结合,玩家在驾驶车辆的同时回答5个简单的数值计算问题,评估识别关联所需的时间(δ)。
      • 数值计算 :测量回答数学问题的总时间(σ),并记录错误数量,该变量对获得逻辑思维的平均分数很重要。
  • 机器学习算法

    • 路径规划 :基于状态机实现路径规划,代理找到从源到目的地的最短路径。路径规划可结合车辆的运动物理特性,如速度、每秒转数和制动距离。路径规划代理代码如下:
Algorithm 1
Step 1
Initialize the structure: Agent, Objective, Time;
Initialize set of variables: Trigger, n;
Step 2
Allocate in random mode the Object.position;
Step 3
Asign the Agent Properties
while trigger = 1&time.count →∞
    for n = 1 to n
        if Agent.position = Objective.position then
            save time.data;
            time.count = 0;
            if Objective.n = n then
                trigger = 0;
            endif
        endif
    endfor
endwhile
- **ML - Agents**:这是一种人工智能学习算法,通过强化学习周期完成特定动作。如果执行正确,给予奖励;否则,重新开始循环,直到达到零错误和快速收敛的良好结果。其超参数配置如下:
变量 变量
Batch size 120 learning rate 0.0003
Num epoch 20 hidden units 256
Strength 1.0 steps 2000000

ML - Agents的训练时间取决于环境的复杂性,最少需要2小时,若出现过度学习可能需要数周。使用Python的tensorflow库进行系统模拟,训练过程基于上述超参数进行评估。研究使用三种不同方法评估每个任务的自动算法最优时间,并与参与者的结果进行比较,选取路径规划算法对应的最关键时间进行对比。

基于组织电特性的癌症检测与人工智能辅助视频游戏检测轻度认知障碍

不同癌症检测方法的综合优势与应用前景

在癌症检测领域,模拟法、离体法和在体实验法各有其独特的优势和适用场景。模拟法能够在虚拟环境中对复杂的生物现象进行精准模拟,为研究人员提供了一个可控的实验平台,有助于深入理解癌症发生发展过程中组织电特性的变化机制。例如,通过算法和建模程序,可以模拟不同类型癌症组织在不同生理条件下的电导率和介电常数变化,从而为开发更有效的检测方法提供理论支持。离体法通过直接获取生物样本,能够获得更真实的组织电特性数据,对于研究癌症组织与正常组织之间的差异具有重要意义。在体实验法则可以在活体生物体内观察癌症的发生发展过程,更贴近实际的临床情况,为癌症的早期检测和治疗提供了直接的证据。
综合运用这些方法,可以充分发挥它们的优势,提高癌症检测的准确性和可靠性。未来,随着技术的不断发展,这些方法有望进一步整合,形成更加完善的癌症检测体系。例如,结合模拟法和离体法,可以在体外模拟体内环境,对离体组织进行更准确的检测;结合在体实验法和生物阻抗技术,可以实现对癌症的实时、无创检测。

人工智能辅助视频游戏检测 MCI 的优化与拓展
  • 检测精度的优化 :虽然人工智能辅助视频游戏在检测轻度认知障碍方面取得了一定的成果,但检测精度仍有提升空间。可以通过增加样本数量和多样性,进一步优化机器学习算法,提高时间阈值的准确性。例如,扩大样本范围,涵盖不同年龄段、不同性别、不同文化背景的人群,以减少因个体差异导致的误差。同时,结合更多的认知评估指标,如语言能力、注意力稳定性等,提高检测的全面性和准确性。
  • 应用场景的拓展 :目前,该方法主要应用于轻度认知障碍的检测,未来可以拓展到更多的认知障碍相关疾病的诊断和治疗。例如,将视频游戏与康复训练相结合,为认知障碍患者提供个性化的康复方案。通过游戏中的任务设置,针对性地训练患者的认知能力,如记忆力、注意力、执行能力等。同时,利用人工智能技术对患者的康复情况进行实时监测和评估,及时调整康复方案,提高康复效果。
  • 技术融合的创新 :可以将人工智能辅助视频游戏与其他先进技术相结合,如虚拟现实、增强现实等,创造更加沉浸式的游戏体验,提高患者的参与度和积极性。例如,利用虚拟现实技术,为玩家打造一个逼真的虚拟城市环境,让玩家在更加真实的场景中完成任务,增强游戏的趣味性和挑战性。同时,结合脑电监测技术,实时获取玩家的大脑活动信息,进一步深入了解玩家的认知状态,为检测和治疗提供更准确的依据。
结论

基于组织电特性的癌症检测和人工智能辅助视频游戏检测轻度认知障碍是两个具有重要意义的研究领域。在癌症检测方面,介电特性、生物阻抗和微波技术等方法为癌症的早期诊断提供了多种途径,不同方法的综合应用有望提高检测的准确性和可靠性。在轻度认知障碍检测方面,人工智能辅助视频游戏通过结合标准化医学测试和机器学习算法,为早期检测提供了一种新颖、非侵入性的方法。虽然目前这两个领域的研究都取得了一定的成果,但仍面临着一些挑战,需要进一步的研究和探索。未来,随着技术的不断进步和研究的深入,相信这些方法将在癌症和认知障碍的检测、诊断和治疗中发挥更加重要的作用,为人类的健康事业做出更大的贡献。

graph LR
    classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
    A(癌症检测):::process --> B(模拟法):::process
    A --> C(离体法):::process
    A --> D(在体实验法):::process
    B --> E(深入理解机制):::process
    C --> F(获取真实数据):::process
    D --> G(贴近临床情况):::process
    E --> H(综合应用):::process
    F --> H
    G --> H
    I(人工智能辅助视频游戏检测 MCI):::process --> J(优化检测精度):::process
    I --> K(拓展应用场景):::process
    I --> L(技术融合创新):::process
    J --> M(增加样本多样性):::process
    J --> N(优化算法):::process
    K --> O(康复训练结合):::process
    K --> P(多疾病诊断):::process
    L --> Q(虚拟现实结合):::process
    L --> R(脑电监测结合):::process
研究领域 现状 挑战 未来展望
癌症检测 多种方法取得进展,可提高早期检测准确性 不同方法的整合和优化 形成完善检测体系,实现实时无创检测
人工智能辅助视频游戏检测 MCI 提供新颖非侵入性检测方法 检测精度和应用范围有待拓展 提高检测精度,拓展应用场景,实现技术融合创新
【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)》的技术资源,聚焦于力系统中低碳经济调度问题,结合N-1安全准则分布鲁棒机会约束(DRCC)方法,提升调度模型在不确定性环境下的鲁棒性和可行性。该资源提供了完整的Matlab代码实现,涵盖建模、优化求解及仿真分析全过程,适用于复杂力系统调度场景的科研复现算法验证。文中还列举了大量相关领域的研究主题代码资源,涉及智能优化算法、机器学习、力系统管理、路径规划等多个方向,展示了广泛的科研应用支持能力。; 适合人群:具备一定力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源调度、智能网相关工作的工程师。; 使用场景及目标:①复现高水平期刊(如EI/SCI)关于低碳经济调度的研究成果;②深入理解N-1安全约束分布鲁棒优化在力调度中的建模方法;③开展含新能源接入的力系统不确定性优化研究;④为科研项目、论文撰写或工程应用提供可运行的算法原型和技术支撑。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码案例数据,按照目录顺序逐步学习,并重点理解DRCC建模思想Matlab/YALMIP/CPLEX等工具的集成使用方式,同时可参考文中列出的同类研究方向拓展研究思路。
内容概要:本文详细介绍了一个基于MATLAB实现的力负荷预测项目,采用K近邻回归(KNN)算法进行建模。项目从背景意义出发,阐述了力负荷预测在提升系统效率、优化能源配置、支撑智能网和智慧城市建设等方面的重要作用。针对负荷预测中影响因素多样、时序性强、数据质量差等挑战,提出了包括特征工程、滑动窗口构造、数据清洗标准化、K值距离度量优化在内的系统性解决方案。模型架构涵盖数据采集、预处理、KNN回归原理、参数调优、性能评估及工程部署全流程,并支持多算法集成可视化反馈。文中还提供了MATLAB环境下完整的代码实现流程,包括数据加载、归一化、样本划分、K值选择、模型训练预测、误差分析结果可视化等关键步骤,增强了模型的可解释性实用性。; 适合人群:具备一定MATLAB编程基础和机器学习基础知识,从事力系统分析、能源管理、智能网或相关领域研究的研发人员、工程师及高校师生;适合工作1-3年希望提升实际项目开发能力的技术人员; 使用场景及目标:①应用于短期力负荷预测,辅助网调度计划制定;②作为教学案例帮助理解KNN回归在实际工程中的应用;③为新能源接入、需求响应、智慧能源系统提供数据支持;④搭建可解释性强、易于部署的轻量级预测模型原型; 阅读建议:建议结合MATLAB代码实践操作,重点关注特征构造、参数调优结果可视化部分,深入理解KNN在时序数据中的适应性改进方法,并可进一步拓展至集成学习或多模型融合方向进行研究优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值