分类指标-逻辑回归

本文探讨了分类指标,特别是在逻辑回归中的应用。重点介绍了精度、准确率、召回率及其权衡,提出通过调整阈值来平衡两者。此外,还提到了F1度量和AUC评价法作为模型性能的评估标准,其中AUC是ROC曲线下的面积,用于衡量模型区分正负样本的能力。
摘要由CSDN通过智能技术生成

分类指标

评估指标

预测预测
10
标签1True PositiveFalse Negative
标签0False PositiveTrue Negative

精度(Accuracy):分类正确的样本数占样本总数的比例
A c c = T P + T N T P + T N + F P + F N \mathrm{Acc}=\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{TN}+\mathrm{FP}+\mathrm{FN}} Acc=TP+TN+FP+FNTP+TN
准确率(Precision):预测为1的样本中标签为1的比例
 Prec  = T P T P + F P \text { Prec }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}  Prec =TP+FPTP
召回率(Recall):标签为1的样本中预测为1的比例
Rec ⁡ = T P T P + F N \operatorname{Rec}=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}} Rec=TP+FNTP
问题:准确率和召回率之间如何权衡

可以用以下公式来表示二者之间的关系:
y ^ = { 1 , p θ ( y = 1 ∣ x ) > h 0 ,  otherwise  \hat{y}=\left\{\begin{array}{ll} 1, & \quad \quad p_{\theta}(y=1 | x)>h \\ 0, & \text { otherwise } \end{array}\right. y^={1,0,pθ(y=1x)>h otherwise 
p θ ( y = 1 ∣ x ) p_{\theta}(y=1 | x) pθ(y=1x) 表示在参数为 θ \theta θ 的模型参数下,预测为1的样本中,标签为1的概率。

阈值[0,1],越高,代表准确度越高,召回率越低,阈值极端值为0.99

阈值越低,准确度越低,召回率越高,极端情况下,阈值=0

F1 度量 :值越大,代表模型表现越佳。
F 1 = 2 ×  Precision  × R e c a l l  Precision  + R e c a l l \mathrm{F} 1=\frac{2 \times \text { Precision } \times \mathrm{Recall}}{\text { Precision }+\mathrm{Recall}} F1= Precision +Recall2× Precision ×Recall
AUC评价法(ROC(Receiver operating characteristic)曲线下面积)

基于排序的度量方法。

可以理解为用描点法,瞄出概率从高到低排列中,每个预测概率下,真正率和假正率组成的点坐标,进而得到ROC曲线,计算其包含的面积后,即可得到AUC值。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值