逻辑回归
一些指标
-
正确率
逻辑回归不是做分类么,假设有100个数据,里面有80个类别为1,20个类别为0。
我们的目的是把类别为0的数据找出来。
我们收集了其中50个数据进行分类。最后分出了40个1,10个0。
那么正确率就是 p r e c i s i o n = 10 50 = 20 % precision=\frac{10}{50}=20\% precision=5010=20%,也就是找出来的比上所有收集的数据。
-
召回率
还是上面那个例子,召回率就是找出来的比上这个类别所有数据的数目
也就是 r e c a l l = 10 20 = 50 % recall=\frac{10}{20}=50\% recall=2010=50%
-
F 1 F_1 F1
F 1 F_1 F1就是正确率和召回率的调和平均值
1 F 1 = 1 2 ( 1 p r e c i s i o n + 1 r e c a l l ) \frac{1}{F_1}=\frac{1}{2}(\frac{1}{precision}+\frac{1}{recall}) F11=21(precision1+recall1)这样F1就能写成
F 1 = 2 ⋅ p r e c i s i o n ⋅ r e c a l l p r e c i s i o n + r e c a l l F_1=\frac{2\cdot precision\cdot recall}{precision+recall} F1=precision+recall2⋅precision⋅recall还是上面的例子
F 1 = 2 ∗ 0.2 ∗ 0.5 0.2 + 0.5 = 2 7 ≈ 28.6 % F_1=\frac{2*0.2*0.5}{0.2+0.5}=\frac27\approx28.6\% F1=0.2+0.52∗0.2∗0.5=72≈28.6%事实上
F β = ( 1 + β 2 ) ⋅ p r e c i s i o n ⋅ r e c a l l β 2 ⋅ p r e c i s i o n + r e c a l l F_\beta=(1+\beta^2)\cdot\frac{precision\cdot recall}{\beta^2\cdot precision+recall} Fβ=(1+β2)⋅β2⋅precision+recallprecision⋅recallF 1 F_1 F1是最常用的也就是 β \beta β取值为1的情况。